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Abstract

In this paper the second and third derivatives of open non- uniform B-spline curves and the
Frenet vector fields and curvatures at the points t = td , t = tm−d and arbitrary point in
domain of this curves are given. In addition,the control points of the second open non-uniform
B-spline curve are given in terms of the control points of the first open non-uniform B-spline
curve when given two curves occured a Bertrand curve pairs at a point.

2000 Mathematics Subject Classification. 13A50, 14L24. 03D50, 51L10.
Keywords. open B-spline curves, Bertrand curve pairs, control points.

1 Introduction

In 1850 J.Bertrand gave the feature that helix curves accept other curves with the same original
normal vector field. [1]. The curves that provide this feature are called Bertrand curves.

When the curve with curvature κ and torsion τ in R3is given, if this curve is planar or the
relationship between its curvatures κ + a τ = b satisfies for nonezero constants a, b then this
curve is a Bertrand curve. [2]. It is possible that the Bertrand curves are defined as their principal
nornals are parallel. [1]. In recent years, Bertrand curves play an important role in computer-
aided geometric designs (CAD) and computer-aided modeling (CAM).[3] , [4], [5] . Due to this
importance Bertrand curves have been studied by geometers in different spaces. [6] ,[7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17] , [18] ,[19], [20], [21] , [22].

The best examples of points systems are Bezier curves and Bezier surfaces. Bezier and B-Spline
curves has been studied in many different are of CAD and CAM system. Some of these studies by
G. Farin [23], R. Farouki [24], [25], J. Hoschek [26] , W. Tiller [27] , H. Potmann [28] , Incesu and
Gursoy [29] , [30], Samanci et al. [31] , [32], [33], [34] , Baydas and Karakas [35] and Incesu [36]
can be given exemplarily.

Other Studies on B-spline curves and NURBS curves [37] , [38], [39], [40], [41], [42], [43], [44],
[45], [46] can be given as examples.

NURBS curves are rational B-Spline curves without uniform distribution. Bezier curves, B-
Spline curves and NURBS curves are curves that are widely used in computer graphics (CAD)
(CAM) systems.

In this study, ”When two NUBS curves A and B are given, their control points are bi and qi, if
these curves form Bertrand pairs at a point, how should be relation between the control points of
these curves bi and qi?” question has been answered.
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2 Preliminaries

Definition 2.1. The B-spline basis functions of degree d, denoted Ni,d(t), defined by the knot
vector t0, t1, ..., tm are defined recursively as follows:

Ni,0(t) =

{
1, t ∈ [ti, ti+1)
0, otherwise

and

Ni,d(t) =
t− ti

ti+d − ti
Ni,d−1(t) +

ti+d+1 − t
ti+d+1 − ti+1

Ni+1,d−1(t) (2.1)

for i = 0, ..., n and d ≥ 1. If the knot vector contains a sufficient number of repeated knot values,
then a division of the form Ni,d−1(t)/(ti+d − ti) = 0/0 (for some i) may be encountered during the
execution of the recursion. Whenever this occurs, it is assumed that 0/0 = 0. [47]

The B-spline curve of degree d (or order d+ 1) with control points b0, ..., bn and knots t0, ..., tm
is defined on the interval [a, b] = [td, tm−d] by

B(t) =

n∑
i=0

biNi,d(t) (2.2)

where Ni,d(t) are the B-spline basis functions of degree d. To distinguish Bspline curves from
their rational form they are often referred to as integral B-splines.[47]

Theorem 2.2. The B-spline basis functions Ni,d(t) satisfy the following properties [47] :

i) Positivity: Ni,d(t) > 0 for t ∈ (ti, ti+d+1).
ii) Local Support: Ni,d(t) = 0 for t /∈ (ti, ti+d+1).
iii) Piecewise Polynomial: Ni,d(t) are piecewise polynomial functions of degree d.

iv) Partition of Unity:
r∑

i=r−d
Ni,d(t) = 1 for t ∈ [tr, tr+1)

Theorem 2.3. A B-spline curve defined as ( 2.2 ) of degree d defined on the knot vector t0, ..., tm
satisfies the following properties [47] :

i) Local Control: Each segment is determined by d + 1 control points. If t ∈ [tr, tr+1)(d ≤
r ≤ m− d− 1), then

B(t) =

r∑
i=r−d

biNi,d(t).

Thus to evaluate B(t) it is sufficient to evaluate Nr−d,d(t), ..., Nr,d(t).
ii) Convex Hull: If t ∈ [tr, tr + 1)(d ≤ r ≤ m− d− 1), then B(t) ∈ CH{br−d, ..., br} .
iii) Invariance under Affine Transformations: Let T be an affine transformation. Then

T

(
r∑

i=r−d

biNi,d(t)

)
=

r∑
i=r−d

T (bi)Ni,d(t)
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2.1 Open B-spline curves

In general, B-spline curves do not interpolate the first and last control points b0 and bn. For curves
of degree d, endpoint interpolation and an endpoint tangent condition are obtained by open B-
splines. An open B-spline curve is a B-spline curve which exterior knot vectors are the same as the
knots td and tm−d. i.e. t0 = t1 = ... = td and tm−d = tm−d+1 = ... = tm−1 = tm satisfies.

Theorem 2.4. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then

B(td) = b0 and B(tm−d) = bn

satisfies [47].

Definition 2.5. A B-spline curve is said to be uniform whenever its knots are equally spaced,
and non-uniform otherwise. A uniform B-spline curve is said to be open uniform whenever its
interior knots are equally spaced, and its exterior knots are same. Similarly A non-uniform B-spline
curve is said to be open non-uniform whenever its exterior knots are same and its interior knots
are not equally spaced.

Theorem 2.6. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then,

B
′
(td) =

d

td+1 − t1
(b1 − b0) (2.3)

B
′
(tm−d) =

d

tm−1 − tm−d−1
(bn − bn−1) (2.4)

are satisfied.[47]

Remark 2.7. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td; td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. If t0 = t1 = ... =
td = 0 and tm−d = tm−d+1 = ... = tm−1 = tm = 1 Then,

B
′
(0) =

d

td+1
(b1 − b0) (2.5)

B
′
(1) =

d

1− tm−d−1
(bn − bn−1) (2.6)

are obtained.
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2.2 The De Boor algorithm

Just as the de Casteljau algorithm for B´ezier curve, evaluations of points on a B-spline curve can
be performed using a method known as the de Boor algorithm. Let an open B-spline curve B(t)
of degree d with control points b0, b1, ..., bn and knot vectors t0 = t1 = ... = td, td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. Suppose t∗ ∈ [tr, tr+1).Then, the De Boor algorith can be
summarized as follows:

bji (t) =
(

1− αji (t)
)
bj−1
i−1 (t) + αji (t)b

j−1
i (t)

αji (t) = t−ti
ti+d−j+1−ti

(2.7)

for j = 1, ..., d and i = r− d+ j, ..., r.where b0i = bi , b−1 = 0 and bm−d+1 = 0.To summarize,
for a given parameter value t, the de Boor algorithm ( 2.7) yields a triangular array of points such
that bdr = B(t)

b0r−d b0r−d+1 ... ... b0r
b1r−d+1 ... ... b1r
... ...

bd−1
r−1 bd−1

r

bdr = B(t)

[47]

3 Main results

3.1 The Frenet frame on the open non-uniform B-spline curves

Theorem 3.1. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then,

B′′(td) =
d(d− 1)

(td+1 − t2) (td+2 − t2)
(b2 − b1)− d(d− 1)

(td+1 − t2) (td+1 − t1)
(b1 − b0) (3.1)

B′′(tm−d) =
d(d− 1)

(tm−2 − tm−d−1) (tm−1 − tm−d−1)
(bn − bn−1) (3.2)

− d(d− 1)

(tm−2 − tm−d−1) (tm−2 − tm−d−2)
(bn−1 − bn−2)

are satisfied.

Proof. From [47], the th r th derivative of an open B-spline curve is B(r)(t) =
∑n−r
i=0 b

(r)
i N

(r)
i,d−r(t)

where b
(0)
i = bi and b

(r)
i = d−r+1

ti+d+1−ti+r
(b

(r−1)
i+1 − b(r−1)

i ). According to this b
(1)
1 = d

td+2−t2 (b2 − b1)

and b
(1)
0 = d

td+1−t1 (b1 − b0) = B′(td) can be written. Also from [47],

B′′(td) = b
(2)
0 = d−1

td+1−t2 (b
(1)
1 − b(1)

0 ) = d−1
td+1−t2

[
d

td+2−t2 (b2 − b1)− d
td+1−t1 (b1 − b0)

]
can be ob-

tained. Similaly the second derivative of open non-uniform B spline curves at the point t = tm−d
can be obtained as

B′′(tm−d) = d(d−1)
(tm−2−tm−d−1)(tm−1−tm−d−1) (bn− bn−1)− d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2) (bn−1− bn−2).
q.e.d.
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Theorem 3.2. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then,

B′′′(td) =
d(d− 1)(d− 2)

(td+1 − t3) (td+2 − t3) (td+3 − t3)
(b3 − b2) (3.3)

− d(d− 1)(d− 2) (td+1 − t2 + td+2 − t3)

(td+1 − t3) (td+2 − t2) (td+2 − t3) (td+1 − t2)
(b2 − b1)

+
d(d− 1)(d− 2)

(td+1 − t3) (td+1 − t2) (td+1 − t1)
(b1 − b0)

B′′′(tm−d) =
d(d− 1)(d− 2)(bn − bn−1)

(tm−3 − tm−d−1) (tm−2 − tm−d−1) (tm−1 − tm−d−1)
(3.4)

− d(d− 1)(d− 2) (tm−3 − tm−d−2 + tm−2 − tm−d−1) (bn−1 − bn−2)

(tm−3 − tm−d−1) (tm−2 − tm−d−2) (tm−2 − tm−d−1) (tm−3 − tm−d−2)

+
d(d− 1)(d− 2)(bn−2 − bn−3)

(tm−3 − tm−d−1) (tm−3 − tm−d−2) (tm−3 − tm−d−3)

are satisfied.

Proof. Let r = 3 be choosen in b
(r)
i . In this case b

(3)
i = (d−2)

(ti+d+1−ti+3)

(
b
(2)
i+1 − b

(2)
i

)
is obtained.

The statements b
(2)
i+1 = (d−1)

(ti+d+2−ti+3)

(
b
(1)
i+2 − b

(1)
i+1

)
and b

(2)
i = (d−1)

(ti+d+1−ti+2)

(
b
(1)
i+1 − b

(1)
i

)
must

be substituted in b
(3)
i . If b

(1)
i+2 = d

(ti+d+3−ti+3) (bi+3 − bi+2), b
(1)
i+1 = d

(ti+d+2−ti+2) (bi+2 − bi+1) and

b
(1)
i = d

(ti+d+1−ti+1) (bi+1 − bi) are substituted in b
(2)
i+1 and b

(2)
i then

b
(2)
i+1 = (d−1)

(ti+d+2−ti+3)

(
d

(ti+d+3−ti+3) (bi+3 − bi+2)− d
(ti+d+3−ti+3) (bi+3 − bi+2)

)
and

b
(2)
i = (d−1)

(ti+d+1−ti+2)

(
d

(ti+d+2−ti+2) (bi+2 − bi+1)− d
(ti+d+1−ti+1) (bi+1 − bi)

)
can be written. So

b
(3)
i = d(d−1)(d−2)

(ti+d+1−ti+3)(ti+d+2−ti+3)(ti+d+3−ti+3) (bi+3 − bi+2)

− d(d−1)(d−2)(ti+d+1−ti+2+ti+d+2−ti+3)
(ti+d+1−ti+3)(ti+d+2−ti+2)(ti+d+2−ti+3)(ti+d+1−ti+2) (bi+2 − bi+1)

+ d(d−1)(d−2)
(ti+d+1−ti+3)(ti+d+1−ti+2)(ti+d+1−ti+1) (bi+1 − bi)

is obtained. From end point interpolation property of open B-spline curves B′′′(td) = b
(3)
0 and

B′′′(tm−d) = b
(3)
n−3 satisfy. So the proof is complated. q.e.d.

Theorem 3.3. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet
vector fields and curvatures of this curve at the point t = td are as follows:

T(td) = b1−b0
‖b1−b0‖ B(td) = (b1−b0)×(b2−b1)

‖(b1−b0)×(b2−b1)‖

N(td) = (b2−b1)
‖(b2−b1)‖cscΦ−

(b1−b0)
‖(b1−b0)‖ cot Φ κ(td) = (d−1)(td+1−t1)2‖(b2−b1)‖

d(td+1−t2)(td+2−t2)‖(b1−b0)‖2 sin Φ
(3.5)
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and

τ(td) =
(d− 2) (td+1 − t1) (td+1 − t2) (td+2 − t2) ‖(b3 − b2)‖ cosϕ

d (td+1 − t3) (td+2 − t3) (td+3 − t3) ‖(b1 − b0)‖ ‖(b2 − b1)‖ sin Φ

whereΦ is the angel between the vectors b1 − b0 and b2 − b1 and ϕ is the angel between the
vectors b3 − b2 and (b1 − b0)× (b2 − b1) .

Proof. i) T(td) = B′(td)
‖B′(td)‖ =

d
td+1−t1

(b1−b0)∥∥∥ d
td+1−t1

(b1−b0)
∥∥∥ = (b1−b0)

‖(b1−b0)‖

ii) B(td) = B′(td)×B′′(td)
‖B′(td)×B′′(td)‖

=
d

td+1−t1
(b1−b0)× d(d−1)

(td+1−t2)(td+2−t2)
(b2−b1)∥∥∥∥ d

td+1−t1
(b1−b0)× d(d−1)

(td+1−t2)(td+2−t2)
(b2−b1)

∥∥∥∥ = (b1−b0)×(b2−b1)
‖(b1−b0)×(b2−b1)‖

iii) N(td) = B(td)×T(td) = (b1−b0)×(b2−b1)
‖(b1−b0)×(b2−b1)‖ ×

(b1−b0)
‖(b1−b0)‖

= ((b1−b0)×(b2−b1))×(b1−b0)
‖(b1−b0)×(b2−b1)‖‖(b1−b0)‖ = ‖(b1−b0)‖2(b2−b1)−〈b1−b0,b2−b1〉(b1−b0)

‖(b1−b0)×(b2−b1)‖‖(b1−b0)‖

= (b2−b1)
‖b2−b1‖ sin Φ −

cos Φ(b1−b0)
sin Φ‖(b1−b0)‖ = (b2−b1)

‖(b2−b1)‖c sec Φ− (b1−b0)
‖(b1−b0)‖ cot Φ

iv) κ(td) =
‖B′(td)×B′′(td)‖
‖B′(td)‖3 =

∥∥∥∥ d
td+1−t1

(b1−b0)× d(d−1)

(td+1−t2)(td+2−t2)
(b2−b1)

∥∥∥∥∥∥∥ d
td+1−t1

(b1−b0)
∥∥∥3

=
d

td+1−t1

d(d−1)

(td+1−t2)(td+2−t2)
‖(b1−b0)×(b2−b1)‖(

d
td+1−t1

)3
‖(b1−b0)‖3

= d−1
d

(td+1−t1)2

(td+1−t2)(td+2−t2)
‖(b2−b1)‖ cos Φ

‖(b1−b0)‖2

v) Let det (b1 − b0, b2 − b1, b3 − b2) be denoted K. Then

τ(td) =
det(B′(td),B′′(td),B′′′(td))

‖B′(td)×B′′(td)‖2

=
d

td+1−t1

d(d−1)

(td+1−t2)(td+2−t2)
d(d−1)(d−2)

(td+1−t3)(td+2−t3)(td+3−t3)
K∥∥∥∥ d

td+1−t1
(b1−b0)× d(d−1)

(td+1−t2)(td+2−t2)
(b2−b1)

∥∥∥∥2

= d−2
d . (td+1−t1)(td+1−t2)(td+2−t2)

(td+1−t3)(td+2−t3)(td+3−t3)
‖b3−b2‖ cosϕ

‖(b1−b0)×(b2−b1)‖ q.e.d.

Theorem 3.4. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet
vector fields and curvatures of this curve at the point t = tm−d are as follows:

T(tm−d) = bn−bn−1

‖bn−bn−1‖ B(tm−d) = − (bn−bn−1)×(bn−1−bn−2)
‖(bn−bn−1)×(bn−1−bn−2)‖

N(tm−d) = − (bn−1−bn−2)
‖bn−1−bn−2‖cscϑ+ (bn−bn−1)

‖bn−bn−1‖ cotϑ
(3.6)

and

κ(tm−d) =
(d− 1) (tm−1 − tm−d−1)

2 ‖bn−1 − bn−2‖
d (tm−2 − tm−d−1) (tm−2 − tm−d−2) ‖bn − bn−1‖2

sinϑ

τ(tm−d) = −d− 2

d

(tm−1 − tm−d−1) (tm−2 − tm−d−1) (tm−2 − tm−d−2)

(tm−3 − tm−d−1) (tm−3 − tm−d−2) (tm−3 − tm−d−3)

‖(bn−2 − bn−3)‖ cosσ

‖(bn − bn−1)× (bn−1 − bn−2)‖
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where ϑ is the angel between the vectors bn−bn−1 and bn−1−bn−2 and σ is the angel between
the vectors bn−3 − bn−2 and (bn − bn−1)× (bn−1 − bn−2) .

Proof. i) T(tm−d) = B′(tm−d)
‖B′(tm−d)‖ =

d
tm−1−tm−d−1

(bn−bn−1)∥∥∥ d
tm−1−tm−d−1

(bn−bn−1)
∥∥∥ = bn−bn−1

‖bn−bn−1‖

ii) B(tm−d) = B′(tm−d)×B′′(tm−d)
‖B′(tm−d)×B′′(tm−d)‖

= −
d

tm−1−tm−d−1
(bn−bn−1)×

[
d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2)
(bn−1−bn−2)

]
∥∥∥∥ d

tm−1−tm−d−1
(bn−bn−1)×

[
d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2)
(bn−1−bn−2)

]∥∥∥∥
= − (bn−bn−1)×(bn−1−bn−2)

‖(bn−bn−1)×(bn−1−bn−2)‖

iii)N(tm−d) = B(tm−d)×T(tm−d) = − (bn−bn−1)×(bn−1−bn−2)
‖(bn−bn−1)×(bn−1−bn−2)‖ ×

bn−bn−1

‖bn−bn−1‖

= (bn−bn−1) cosϑ
‖bn−bn−1‖ sinϑ −

(bn−1−bn−2)
‖(bn−1−bn−2)‖ sinϑ

= (bn−bn−1)
‖bn−bn−1‖ cotϑ− (bn−1−bn−2)

‖(bn−1−bn−2)‖c secϑ

iv) κ(tm−d) =
‖B′(tm−d)×B′′(tm−d)‖

‖B′(tm−d)‖3

=

∥∥∥∥ d
tm−1−tm−d−1

(bn−bn−1)×
[

d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2)
(bn−1−bn−2)

]∥∥∥∥∥∥∥ d
tm−1−tm−d−1

(bn−bn−1)
∥∥∥3

= (d−1)(tm−1−tm−d−1)2‖bn−1−bn−2‖
d(tm−2−tm−d−1)(tm−2−tm−d−2)‖bn−bn−1‖2

sinϑ

v) Let det (bn − bn−1, bn−1 − bn−2, bn−2 − bn−3) be denoted by J . Then

τ(tm−d) =
det(B′(tm−d),B′′(tm−d),B′′′(tm−d))

‖B′(tm−d)×B′′(tm−d)‖2

= −
d

tm−1−tm−d−1

d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2)
d(d−1)(d−2)

(tm−3−tm−d−1)(tm−3−tm−d−2)(tm−3−tm−d−3)
J∥∥∥∥ d

tm−1−tm−d−1
(bn−bn−1)×

[
d(d−1)

(tm−2−tm−d−1)(tm−2−tm−d−2)
(bn−1−bn−2)

]∥∥∥∥2

= −d−2
d

(tm−1−tm−d−1)(tm−2−tm−d−1)(tm−2−tm−d−2)
(tm−3−tm−d−1)(tm−3−tm−d−2)(tm−3−tm−d−3)

‖(bn−2−bn−3)‖ cosσ
‖(bn−bn−1)×(bn−1−bn−2)‖ q.e.d.

In open B-spline curves, in order to express the Frenet frame of the curve {T,N,B} and the
curvatures at any point t∗ ∈ (tr, tr+1), (d ≤ r ≤ m− d− 1), except t∗ = td and t∗ = tm−d, the sub-
division algorithm is applied to the curve by applying Boor algorithm in parallel with the Casteljau
algorithm.Thus the B-spline curve is divided into two segments. The points

{
bdr , b

d−1
r , bd−2

r , bd−3
r

}
found by the algorithm at the given point t∗ will represent the first 4 control points of the new
B-spline curve on the right of the obtained two segments. So these control points represent the
b0, b1, b2, b3 points of the new B-spline curve. The point t∗ here will also represent the point td of
the new B-spline curve. So following theorem can be proved similarly as before.

Theorem 3.5. An open B-spline curve B(t) of degree d with control points b0, b1, ..., bn and knot
vectors t0 = t1 = ... = td, td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet
vector fields and curvatures of this curve at the point t = t∗ ∈ (tr, tr+1) ,(d ≤ r ≤ m− d− 1) are
as follows:

T(t∗) =
bd−1
r −bdr
‖bd−1

r −bdr‖
B(t∗) =

(bd−1
r −bdr)×(bd−2

r −bd−1
r )

‖(bd−1
r −bdr)×(bd−2

r −bd−1
r )‖

N(td) =
(bd−2

r −bd−1
r )

‖(bd−2
r −bd−1

r )‖cscΦ−
(bd−1

r −bdr)
‖(bd−1

r −bdr)‖ cot Φ
(3.7)
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and

κ(t∗) =
(d− 1) (td+1 − t1)

2 ∥∥(bd−2
r − bd−1

r

)∥∥
d (td+1 − t2) (td+2 − t2)

∥∥(bd−1
r − bdr

)∥∥2 sin Φ

τ(t∗) =
(d− 2) (td+1 − t1) (td+1 − t2) (td+2 − t2)

∥∥(bd−3
r − bd−2

r

)∥∥ cosϕ

d (td+1 − t3) (td+2 − t3) (td+3 − t3)
∥∥(bd−1

r − bdr
)∥∥ ∥∥(bd−2

r − bd−1
r

)∥∥ sin Φ

whereΦ is the angel between the vectors bd−1
r −bdr and bd−2

r −bd−1
r and ϕ is the angel between

the vectors bd−3
r − bd−2

r and
(
bd−1
r − bdr

)
×
(
bd−2
r − bd−1

r

)
.

3.2 The Bertrand pairs of open non-uniform B-spline curves

Theorem 3.6. Let two open non-uniform B-spline curves γ1(t) and γ2(t) of degree d with control
points b0, b1, ..., bn and c0, c1, ..., cn respectively and knot vectors t0 = t1 = ... = td, td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair at the point
t = td if and only if there exist θ ∈ [0, 2π] and k ∈ R such that

c1 = c0 + (b1 − b0) cos θ − (b1 − b0)× (b2 − b1) sin θ

c2 = c1 + k(b1 − b0) + (b2 − b1)

satisfies.

Proof. If these curves γ1 and γ2 form a Bertrand pair at the point t = td then Nγ1(td) = Nγ2(td)
satisfies. Thus these vectors ((b1 − b0)× (b2 − b1))× (b1− b0) and ((c1 − c0)× (c2 − c1))× (c1− c0)
be parallel. So The vectors (c1 − c0) × (c2 − c1) , c1 − c0 , (b1 − b0) × (b2 − b1) , and b1 − b0
must be coplanar. In addition since the vectors system {c1 − c0 and (c1 − c0)× (c2 − c1)} and
{b1 − b0 and (b1 − b0)× (b2 − b1)} are orthogonal, these systems must be O+(2)−equivalent. i.e.

{c1 − c0 , (c1 − c0)× (c2 − c1)}
O+(2)
≈ {b1 − b0 , (b1 − b0)× (b2 − b1)} .

This means that there exist θ ∈ [0, 2π] such that

c1 − c0 = (b1 − b0) cos θ − (b1 − b0)× (b2 − b1) sin θ

(c1 − c0)× (c2 − c1) = (b1 − b0) sin θ + (b1 − b0)× (b2 − b1) cos θ

can be written. From this, c1 = c0 + (b1 − b0) cos θ − (b1 − b0)× (b2 − b1) sin θ is obtained and
if this substitude to second then

(c1 − c0)× (c2 − c1) = [(b1 − b0) cos θ − (b1 − b0)× (b2 − b1) sin θ]× (c2 − c1)
= (b1 − b0)× (c2 − c1) cos θ − [(b1 − b0)× (b2 − b1)]× (c2 − c1) sin θ
= (b1 − b0) sin θ + (b1 − b0)× (b2 − b1) cos θ
can be written. Thus, from the property of vector product ”×” and the linearly independenties

of the functions sinus and cosinus,

(b1 − b0)× (c2 − c1) = (b1 − b0)× (b2 − b1)

〈(c2 − c1) , (b2 − b1)〉 = 1

〈(b1 − b0), (c2 − c1)〉 = 0
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can be obtained. So, the vectors (c2 − c1)− (b2 − b1) and (b1−b0) must be parallel. Thus, there
exist k ∈ R such that (c2 − c1)− (b2 − b1) = k(b1 − b0) can be written. So

c2 = c1 + k(b1 − b0) + (b2 − b1)

be obtained. q.e.d.

Theorem 3.7. Let two open non-uniform B-spline curves γ1(t) and γ2(t) of degree d with control
points b0, b1, ..., bn and c0, c1, ..., cn respectively and knot vectors t0 = t1 = ... = td, td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair at the point
t = tm−d if and only if there exist θ ∈ [0, 2π] and k ∈ R such that

cn = cn−1 + (bn − bn−1) cos θ − (bn − bn−1)× (bn−1 − bn−2) sin theta

cn−1 = cn−2 + (bn−1 − bn−2) + k(bn − bn−1)

satisfies.

Proof. It is proved similarly as previous theorem. q.e.d.

Theorem 3.8. Let two open non-uniform B-spline curves γ1(t) and γ2(t) of degree d with control
points b0, b1, ..., bn and c0, c1, ..., cn respectively and knot vectors t0 = t1 = ... = td, td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair at the point
t = t∗ ∈ (tr, tr+1) ,(d ≤ r ≤ m− d− 1) if and only if there exist θ ∈ [0, 2π] and k ∈ R such that

cd−1
r = cdr + (bd−1

r − bdr) cos theta− (bd−1
r − bdr)× (bd−2

r − bd−1
r )) sin theta

cd−2
r = cd−1

r + k(bd−1
r − bdr) + (bd−2

r − bd−1
r )

satisfies.

Proof. When the De Boor algorithm apply to these curves γ1(t) and γ2(t) at the pıoint t∗ ∈
(tr, tr+1), the control points

{
bdr , b

d−1
r , bd−2

r , bd−3
r

}
and

{
cdr , c

d−1
r , cd−2

r , cd−3
r

}
can be obtained. So

if these control points be written in the theorem at the point t = td, then the proof is completed.
q.e.d.

Theorem 3.9. Let two open non-uniform B-spline curves γ1(t) and γ2(t) of degree d with control
points b0, b1, ..., bn and c0, c1, ..., cn respectively and knot vectors t0 = t1 = ... = td, td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. Then if these curves γ1(t) and γ2(t) are Tr(3)− Equivalent
curves then γ1 and γ2 form a Bertrand pair.

Proof. Tr(3) is a group of all translation’s in R3. A translation g in Tr(3) is defined by gx = x+ b;
b ∈ R3. Two points x and y in R3 are called Tr(3)− equivalent if there exist a transformation g
in Tr(3)− such that y = gx satisfies. Let two open non-uniform B-spline curves γ1(t) and γ2(t)
of degree d with control points b0, b1, ..., bn and c0, c1, ..., cn respectively be given. For p ∈ R3, let
ci = bi + p, i = 0, ..., n be given. it must be proved that γ1(t) and γ2(t) form a Bertrand pair.
Fistly in case t = td be considered.
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((c1 − c0)× (c2 − c1))× (c1 − c0) = (((b1 + p)− (b0 + p))× ((b2 + p)− (b1 + p)))× ((b1 + p)−
(b0 + p))

= ((b1 − b0)× (b2 − b1))× (b1 − b0) is obtained. So Nγ1(td) = Nγ2(td) and these curves form a
Bertrand pair.

in case t = tm−d be considered. Then
((cn − cn−1)× (cn−1 − cn−2))× (cn − cn−1)
= (((bn + p)− (bn−1 + p))× ((bn−1 + p)− (bn−2 + p)))× ((bn + p)− (bn−1 + p))
= ((bn − bn−1)× (bn−1 − bn−2)) × (bn − bn−1) is obtained. So Nγ1(td) = Nγ2(td) and these

curves form a Bertrand pair.
Now let t∗ ∈ (tr, tr+1) be considered (d ≤ r ≤ m− d− 1). Let apply the De Boor algorihm to

these curves at point t∗. it must be proved that cji = bji + p satisfies for every i and every j. Let

αji (t) = t−ti
ti+d−j+1−ti be considered. Let’s do the proof by induction. in case j = 1. Then

c1i =
(
1− α1

i (t)
)
c0i−1(t) + α1

i (t)c
0
i (t)

=
(
1− α1

i (t)
)
ci−1 + α1

i (t)ci = ci−1 − α1
i (t)ci−1 + α1

i (t)ci
= (bi−1 + p)− α1

i (t) (bi−1 + p) + α1
i (t) (bi + p)

= bi−1 + p− α1
i (t)bi−1 − α1

i (t)p+ α1
i (t)bi + α1

i (t)p
=
[
bi−1 − α1

i (t)bi−1 + α1
i (t)bi

]
+ p

[
α1
i (t) + 1− α1

i (t)
]

=
[(

1− α1
i (t)

)
bi−1 + α1

i (t)bi
]

+ p
= b1i + p

is obtained. Let it is true for j − 1 be supposed. i.e. cj−1
i (t) = bj−1

i (t) + p is true for ecery i be
supposed. Let this be proved in case j.

cji (t) =
(

1− αji (t)
)
cj−1
i−1 (t) + αji (t)c

j−1
i (t)

=
(

1− αji (t)
)(

bj−1
i−1 (t) + p

)
+ αji (t)

(
bj−1
i (t) + p

)
= bj−1

i−1 (t)− αji (t)b
j−1
i−1 (t) + p− αji (t)p+ αji (t)b

j−1
i (t) + αji (t)p

=
[
bj−1
i−1 (t)

(
1− αji (t)

)
+ αji (t)b

j−1
i (t)

]
+ p

= bji (t) + p

is obtained. So for every i and for every j , cji (t) = bji (t) + p satisfies. Then cdr = cdr + p,
cd−1
r = bd−1

r , cd−2
r = bd−2

r + p, cd−3
r = bd−3

r + p are written. So it is proved. q.e.d.

Example 3.10. Let consider the open B-spline curve of degree 3 with control points b0 = (4, 2, 2),
b1 = (2, 1, 4), b2 = (3, 4, 1), b3 = (3, 5, 5) and knot vectors t0 = t1 = t2 = t3 = 0; ; 1 = t4 = t5 =
t6 = t7.

This is cubic B-spline curve. The spline basis functions:
degree 0

N0,0 = 0 N2,0 = 0 N4,0 = 0 N5,0 = 0

N1,0 = 0 N3,0 = {}1, t ∈ [0, 1]0, otherwise N6,0 = 0

degree 1:

N0,1 = 0 N2,1 = {}1− t, t ∈ [0, 1]0, otherwise N4,1 = 0

N1,1 = 0 N3,1 = {}t, t ∈ [0, 1]0, otherwise N5,1 = 0
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degree 2:

N0,2 = 0 N2,2 = {}2t (1− t) , t ∈ [0, 1]0, otherwise N4,2 = 0

N1,2 = {}(1− t)2
, t ∈ [0, 1]0, otherwise N3,2 = {}t2, t ∈ [0, 1]0, otherwise

and degree 3:

N0,3 = {}(1− t)3
, t ∈ [0, 1]0, otherwise N2,3 = {}3t2 (1− t) , t ∈ [0, 1]0, otherwise

N1,3 = {}3t (1− t)2
, t ∈ [0, 1]0, otherwise N3,3 = {}t3, t ∈ [0, 1]0, otherwise

Then the open B-spline curve can be written as:

γ1(t) = N0,3b0 +N1,3b1 +N2,3b2 +N3,3b3

= {}(1− t)3
b0 + 3t (1− t)2

b1 + 3t2 (1− t) b2 + t3b3, t ∈ [0, 1]0, otherwise

This means: for t ∈ [0, 1],

γ1(t) = (−4t3 + 9t2 − 6t+ 4,−6t3 + 12t2 − 3t+ 2, 12t3 − 15t2 + 6t+ 2

Figure 1. Bertrand pair of open non-uniform B-spline curves γ1 and γ2

Now, taking the angels as zero and the multiplicity as 1, from Theorem 10 and 11, the control
points of second curve named γ2 are c0 = (4, 0, 3), c1 = (2,−1, 5), c2 = (3, 3, 6), c3 = (3, 4, 10)
and these curves form a Bertrand pair indeed.(See Fig. 1)
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[11] Balgetir, H., Bektaş, M., Ergüt, M., Bertrand curves for nonnull curves in three dimensional
Lorentzian space, Hadronic Journal, 27,(2004) 229-236.

[12] Balgetir, H., Bektas, M., Inoguchi, J. I.,Null Bertrand curves in Minkowski 3-space and the
ircharacterizations. Notedi matematica, 23(1),(2004) 7-13.
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