The selection of control points for two open non uniform B-spline curves to form Bertrand pairs

Muhsin Incesu ${ }^{1}$ and Sara Yilmaz Evren ${ }^{2}$
${ }^{1}$ Mus Alparslan University Department of Mathematics Education 49100 Mus - Turkey
${ }_{2}$ Mus Alparslan University Mathematics Department Ms. of Sci. Student
E-mail: m.incesu@alparslan.edu.tr ${ }^{1}$, sara_yilmaz_90@hotmail.com ${ }^{2}$

Abstract

In this paper the second and third derivatives of open non- uniform B-spline curves and the Frenet vector fields and curvatures at the points $t=t_{d}, t=t_{m-d}$ and arbitrary point in domain of this curves are given. In addition, the control points of the second open non-uniform B-spline curve are given in terms of the control points of the first open non-uniform B-spline curve when given two curves occured a Bertrand curve pairs at a point.

2000 Mathematics Subject Classification. 13A50, 14L24. 03D50, 51L10.
Keywords. open B-spline curves, Bertrand curve pairs, control points.

1 Introduction

In 1850 J.Bertrand gave the feature that helix curves accept other curves with the same original normal vector field. [1]. The curves that provide this feature are called Bertrand curves.

When the curve with curvature κ and torsion τ in R^{3} is given, if this curve is planar or the relationship between its curvatures $\kappa+a \tau=b$ satisfies for nonezero constants a, b then this curve is a Bertrand curve. [2]. It is possible that the Bertrand curves are defined as their principal nornals are parallel. [1]. In recent years, Bertrand curves play an important role in computeraided geometric designs (CAD) and computer-aided modeling (CAM).[3], [4], [5] . Due to this importance Bertrand curves have been studied by geometers in different spaces. [6], ,[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] , [19], [20], [21], [22].

The best examples of points systems are Bezier curves and Bezier surfaces. Bezier and B-Spline curves has been studied in many different are of CAD and CAM system. Some of these studies by G. Farin [23], R. Farouki [24], [25], J. Hoschek [26] , W. Tiller [27] , H. Potmann [28], Incesu and Gursoy [29], [30], Samanci et al. [31], [32], [33], [34], Baydas and Karakas [35] and Incesu [36] can be given exemplarily.

Other Studies on B-spline curves and NURBS curves [37] , [38], [39], [40], [41], [42], [43], [44], [45], [46] can be given as examples.

NURBS curves are rational B-Spline curves without uniform distribution. Bezier curves, BSpline curves and NURBS curves are curves that are widely used in computer graphics (CAD) (CAM) systems.

In this study, "When two NUBS curves A and B are given, their control points are b_{i} and q_{i}, if these curves form Bertrand pairs at a point, how should be relation between the control points of these curves b_{i} and q_{i} ?" question has been answered.

2 Preliminaries

Definition 2.1. The B-spline basis functions of degree d, denoted $N_{i, d}(t)$, defined by the knot vector $t_{0}, t_{1}, \ldots, t_{m}$ are defined recursively as follows:

$$
N_{i, 0}(t)=\left\{\begin{array}{c}
1, t \in\left[t_{i}, t_{i+1}\right) \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\begin{equation*}
N_{i, d}(t)=\frac{t-t_{i}}{t_{i+d}-t_{i}} N_{i, d-1}(t)+\frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} N_{i+1, d-1}(t) \tag{2.1}
\end{equation*}
$$

for $i=0, \ldots, n$ and $d \geq 1$. If the knot vector contains a sufficient number of repeated knot values, then a division of the form $N_{i, d-1}(t) /\left(t_{i+d}-t_{i}\right)=0 / 0$ (for some i) may be encountered during the execution of the recursion. Whenever this occurs, it is assumed that $0 / 0=0$. [47]

The B-spline curve of degree d (or order $d+1$) with control points b_{0}, \ldots, b_{n} and knots t_{0}, \ldots, t_{m} is defined on the interval $[a, b]=\left[t_{d}, t_{m-d}\right]$ by

$$
\begin{equation*}
B(t)=\sum_{i=0}^{n} b_{i} N_{i, d}(t) \tag{2.2}
\end{equation*}
$$

where $N_{i, d}(t)$ are the B-spline basis functions of degree d. To distinguish Bspline curves from their rational form they are often referred to as integral B-splines.[47]

Theorem 2.2. The B-spline basis functions $N_{i, d}(t)$ satisfy the following properties [47] :
i) Positivity: $N_{i, d}(t)>0$ for $t \in\left(t_{i}, t_{i+d+1}\right)$.
ii) Local Support: $N_{i, d}(t)=0$ for $t \notin\left(t_{i}, t_{i+d+1}\right)$.
iii) Piecewise Polynomial: $N_{i, d}(t)$ are piecewise polynomial functions of degree d.
iv) Partition of Unity: $\sum_{i=r-d}^{r} N_{i, d}(t)=1$ for $t \in\left[t_{r}, t_{r+1}\right)$

Theorem 2.3. A B-spline curve defined as (2.2) of degree d defined on the knot vector t_{0}, \ldots, t_{m} satisfies the following properties [47] :
i) Local Control: Each segment is determined by $d+1$ control points. If $t \in\left[t_{r}, t_{r+1}\right)(d \leq$ $r \leq m-d-1$), then

$$
B(t)=\sum_{i=r-d}^{r} b_{i} N_{i, d}(t)
$$

Thus to evaluate $B(t)$ it is sufficient to evaluate $N_{r-d, d}(t), \ldots, N_{r, d}(t)$.
ii) Convex Hull: If $t \in[t r, t r+1)(d \leq r \leq m-d-1)$, then $B(t) \in C H\left\{b_{r-d}, \ldots, b_{r}\right\}$.
iii) Invariance under Affine Transformations: Let T be an affine transformation. Then

$$
T\left(\sum_{i=r-d}^{r} b_{i} N_{i, d}(t)\right)=\sum_{i=r-d}^{r} T\left(b_{i}\right) N_{i, d}(t)
$$

2.1 Open B-spline curves

In general, B-spline curves do not interpolate the first and last control points b_{0} and b_{n}. For curves of degree d, endpoint interpolation and an endpoint tangent condition are obtained by open Bsplines. An open B-spline curve is a B-spline curve which exterior knot vectors are the same as the knots t_{d} and t_{m-d}. i.e. $t_{0}=t_{1}=\ldots=t_{d}$ and $t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ satisfies.

Theorem 2.4. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then

$$
B\left(t_{d}\right)=b_{0} \quad \text { and } \quad B\left(t_{m-d}\right)=b_{n}
$$

satisfies [47].
Definition 2.5. A B-spline curve is said to be uniform whenever its knots are equally spaced, and non-uniform otherwise. A uniform B-spline curve is said to be open uniform whenever its interior knots are equally spaced, and its exterior knots are same. Similarly A non-uniform B-spline curve is said to be open non-uniform whenever its exterior knots are same and its interior knots are not equally spaced.

Theorem 2.6. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then,

$$
\begin{gather*}
B^{\prime}\left(t_{d}\right)=\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right) \tag{2.3}\\
B^{\prime}\left(t_{m-d}\right)=\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \tag{2.4}
\end{gather*}
$$

are satisfied.[47]
Remark 2.7. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d} ; t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. If $t_{0}=t_{1}=\ldots=$ $t_{d}=0$ and $t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}=1$ Then,

$$
\begin{gather*}
B^{\prime}(0)=\frac{d}{t_{d+1}}\left(b_{1}-b_{0}\right) \tag{2.5}\\
B^{\prime}(1)=\frac{d}{1-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \tag{2.6}
\end{gather*}
$$

are obtained.

2.2 The De Boor algorithm

Just as the de Casteljau algorithm for B'ezier curve, evaluations of points on a B-spline curve can be performed using a method known as the de Boor algorithm. Let an open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=$ $t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Suppose $t^{*} \in\left[t_{r}, t_{r+1}\right)$. Then, the De Boor algorith can be summarized as follows:

$$
\begin{gather*}
b_{i}^{j}(t)=\left(1-\alpha_{i}^{j}(t)\right) b_{i-1}^{j-1}(t)+\alpha_{i}^{j}(t) b_{i}^{j-1}(t) \tag{2.7}\\
\alpha_{i}^{j}(t)=\frac{t-t_{i}}{t_{i+d-j+1}-t_{i}}
\end{gather*}
$$

for $j=1, \ldots, d$ and $i=r-d+j, \ldots, r$. where $b_{i}^{0}=b_{i}, \quad b_{-1}=0$ and $b_{m-d+1}=0$.To summarize, for a given parameter value t , the de Boor algorithm (2.7) yields a triangular array of points such that $b_{r}^{d}=B(t)$

$$
\begin{array}{ccccc}
b_{r-d}^{0} & b_{r-d+1}^{0} & \ldots & \ldots & b_{r}^{0} \\
b_{r-d+1}^{1} & \ldots & \ldots & b_{r}^{1} & \\
\ldots & \ldots & & & \\
b_{r-1}^{d-1} & b_{r}^{d-1} & & & \\
b_{r}^{d}=B(t) & & & &
\end{array}
$$

[47]

3 Main results

3.1 The Frenet frame on the open non-uniform B-spline curves

Theorem 3.1. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then,

$$
\begin{gather*}
B^{\prime \prime}\left(t_{d}\right)=\frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left(b_{2}-b_{1}\right)-\frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+1}-t_{1}\right)}\left(b_{1}-b_{0}\right) \tag{3.1}\\
B^{\prime \prime}\left(t_{m-d}\right)=\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-1}-t_{m-d-1}\right)}\left(b_{n}-b_{n-1}\right) \tag{3.2}\\
-\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right)
\end{gather*}
$$

are satisfied.
Proof. From [47], the th r th derivative of an open B-spline curve is $B^{(r)}(t)=\sum_{i=0}^{n-r} b_{i}^{(r)} N_{i, d-r}^{(r)}(t)$ where $b_{i}^{(0)}=b_{i}$ and $b_{i}^{(r)}=\frac{d-r+1}{t_{i+d+1}-t_{i+r}}\left(b_{i+1}^{(r-1)}-b_{i}^{(r-1)}\right)$. According to this $b_{1}^{(1)}=\frac{d}{t_{d+2}-t_{2}}\left(b_{2}-b_{1}\right)$ and $b_{0}^{(1)}=\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right)=B^{\prime}\left(t_{d}\right)$ can be written. Also from [47],

$$
B^{\prime \prime}\left(t_{d}\right)=b_{0}^{(2)}=\frac{d-1}{t_{d+1}-t_{2}}\left(b_{1}^{(1)}-b_{0}^{(1)}\right)=\frac{d-1}{t_{d+1}-t_{2}}\left[\frac{d}{t_{d+2}-t_{2}}\left(b_{2}-b_{1}\right)-\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right)\right] \text { can be ob- }
$$ tained. Similaly the second derivative of open non-uniform B spline curves at the point $t=t_{m-d}$ can be obtained as

$$
B^{\prime \prime}\left(t_{m-d}\right)=\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-1}-t_{m-d-1}\right)}\left(b_{n}-b_{n-1}\right)-\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right) \text {. }
$$

Theorem 3.2. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then,

$$
\begin{align*}
B^{\prime \prime \prime}\left(t_{d}\right)= & \frac{d(d-1)(d-2)}{\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+3}-t_{3}\right)}\left(b_{3}-b_{2}\right) \tag{3.3}\\
& -\frac{d(d-1)(d-2)\left(t_{d+1}-t_{2}+t_{d+2}-t_{3}\right)}{\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{2}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+1}-t_{2}\right)}\left(b_{2}-b_{1}\right) \\
& +\frac{d(d-1)(d-2)}{\left(t_{d+1}-t_{3}\right)\left(t_{d+1}-t_{2}\right)\left(t_{d+1}-t_{1}\right)}\left(b_{1}-b_{0}\right) \\
B^{\prime \prime \prime}\left(t_{m-d}\right)= & \frac{d(d-1)(d-2)\left(b_{n}-b_{n-1}\right)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-1}-t_{m-d-1}\right)} \tag{3.4}\\
& -\frac{d(d-1)(d-2)\left(t_{m-3}-t_{m-d-2}+t_{m-2}-t_{m-d-1}\right)\left(b_{n-1}-b_{n-2}\right)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-3}-t_{m-d-2}\right)} \\
& +\frac{d(d-1)(d-2)\left(b_{n-2}-b_{n-3}\right)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-3}-t_{m-d-2}\right)\left(t_{m-3}-t_{m-d-3}\right)}
\end{align*}
$$

are satisfied.
Proof. Let $r=3$ be choosen in $b_{i}^{(r)}$. In this case $b_{i}^{(3)}=\frac{(d-2)}{\left(t_{i+d+1}-t_{i+3}\right)}\left(b_{i+1}^{(2)}-b_{i}^{(2)}\right)$ is obtained. The statements $b_{i+1}^{(2)}=\frac{(d-1)}{\left(t_{i+d+2}-t_{i+3}\right)}\left(b_{i+2}^{(1)}-b_{i+1}^{(1)}\right) \quad$ and $\quad b_{i}^{(2)}=\frac{(d-1)}{\left(t_{i+d+1}-t_{i+2}\right)}\left(b_{i+1}^{(1)}-b_{i}^{(1)}\right)$ must be substituted in $b_{i}^{(3)}$. If $b_{i+2}^{(1)}=\frac{d}{\left(t_{i+d+3}-t_{i+3}\right)}\left(b_{i+3}-b_{i+2}\right), \quad b_{i+1}^{(1)}=\frac{d}{\left(t_{i+d+2}-t_{i+2}\right)}\left(b_{i+2}-b_{i+1}\right)$ and $b_{i}^{(1)}=\frac{d}{\left(t_{i+d+1}-t_{i+1}\right)}\left(b_{i+1}-b_{i}\right)$ are substituted in $b_{i+1}^{(2)}$ and $b_{i}^{(2)}$ then $b_{i+1}^{(2)}=\frac{(d-1)}{\left(t_{i+d+2}-t_{i+3}\right)}\left(\frac{d}{\left(t_{i+d+3}-t_{i+3}\right)}\left(b_{i+3}-b_{i+2}\right)-\frac{d}{\left(t_{i+d+3}-t_{i+3}\right)}\left(b_{i+3}-b_{i+2}\right)\right)$ and $b_{i}^{(2)}=\frac{(d-1)}{\left(t_{i+d+1}-t_{i+2}\right)}\left(\frac{d}{\left(t_{i+d+2}-t_{i+2}\right)}\left(b_{i+2}-b_{i+1}\right)-\frac{d}{\left(t_{i+d+1}-t_{i+1}\right)}\left(b_{i+1}-b_{i}\right)\right)$ can be written. So

$$
\begin{aligned}
& b_{i}^{(3)}=\frac{d(d-1)(d-2)}{\left(t_{i}+d+1-t_{i+3}\right)\left(t_{i+d+2}-t_{i+3}\right)\left(t_{i+d+3}-t_{i+3}\right)}\left(b_{i+3}-b_{i+2}\right) \\
& -\frac{d(d-1)(d-2)\left(t_{i+d+1-1}-t_{i+2}+t_{i+d+2}-t_{i+3}\right)}{\left(t_{i+d+1}-t_{i+3}\right)\left(t_{i+d}-t_{i+2}\right)\left(t_{i+d+2}-t_{i+3}\right)\left(t_{i+d+1}-t_{i+2}\right)}\left(b_{i+2}-b_{i+1}\right) \\
& +\frac{d(d-1)(d-2)}{\left(t_{i+d+1}-t_{i+3}\right)\left(t_{i+d+1}-t_{i+2}\right)\left(t_{i+d+1}-t_{i+1}\right)}\left(b_{i+1}-b_{i}\right)
\end{aligned}
$$

is obtained. From end point interpolation property of open B-spline curves $B^{\prime \prime \prime}\left(t_{d}\right)=b_{0}^{(3)}$ and $B^{\prime \prime \prime}\left(t_{m-d}\right)=b_{n-3}^{(3)}$ satisfy. So the proof is complated. Q.E.D.

Theorem 3.3. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then, the Frenet vector fields and curvatures of this curve at the point $t=t_{d}$ are as follows:

$$
\begin{array}{cc}
\mathbf{T}\left(t_{d}\right)=\frac{b_{1}-b_{0}}{\left\|b_{1}-b_{0}\right\|} & \mathbf{B}\left(t_{d}\right)=\frac{\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|} \\
\mathbf{N}\left(t_{d}\right)=\frac{\left(b_{2}-b_{1}\right)}{\left\|\left(b_{2}-b_{1}\right)\right\|} \csc \Phi-\frac{\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right)\right\|} \cot \Phi & \kappa\left(t_{d}\right)=\frac{(d-1)\left(t_{d+1}-t_{1}\right)\left\|\left(b_{2}-b_{1}\right)\right\|}{d\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)\left\|\left(b_{1}-b_{0}\right)\right\|^{2}} \sin \Phi \tag{3.5}
\end{array}
$$

and

$$
\tau\left(t_{d}\right)=\frac{(d-2)\left(t_{d+1}-t_{1}\right)\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)\left\|\left(b_{3}-b_{2}\right)\right\| \cos \varphi}{d\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+3}-t_{3}\right)\left\|\left(b_{1}-b_{0}\right)\right\|\left\|\left(b_{2}-b_{1}\right)\right\| \sin \Phi}
$$

where Φ is the angel between the vectors $b_{1}-b_{0}$ and $b_{2}-b_{1} \quad$ and φ is the angel between the vectors $b_{3}-b_{2}$ and $\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)$.
Proof. i) $\mathbf{T}\left(t_{d}\right)=\frac{B^{\prime}\left(t_{d}\right)}{\left\|B^{\prime}\left(t_{d}\right)\right\|}=\frac{\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right)}{\left\|\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right)\right\|}=\frac{\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right)\right\|}$
ii) $\mathbf{B}\left(t_{d}\right)=\frac{B^{\prime}\left(t_{d}\right) \times B^{\prime \prime}\left(t_{d}\right)}{\left\|B^{\prime}\left(t_{d}\right) \times B^{\prime \prime}\left(t_{d}\right)\right\|}$
$=\frac{\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right) \times \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left(b_{2}-b_{1}\right)}{\left\|\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right) \times \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left(b_{2}-b_{1}\right)\right\|}=\frac{\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|}$
iii) $\mathbf{N}\left(t_{d}\right)=\mathbf{B}\left(t_{d}\right) \times \mathbf{T}\left(t_{d}\right)=\frac{\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|} \times \frac{\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right)\right\|}$

$$
=\frac{\left(\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right) \times\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|\left\|\left(b_{1}-b_{0}\right)\right\|}=\frac{\left\|\left(b_{1}-b_{0}\right)\right\|^{2}\left(b_{2}-b_{1}\right)-\left\langle b_{1}-b_{0}, b_{2}-b_{1}\right\rangle\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|\left\|\left(b_{1}-b_{0}\right)\right\|}
$$

$$
=\frac{\left(b_{2}-b_{1}\right)}{\left\|b_{2}-b_{1}\right\| \sin \Phi}-\frac{\cos \Phi\left(b_{1}-b_{0}\right)}{\sin \Phi\left\|\left(b_{1}-b_{0}\right)\right\|}=\frac{\left(b_{2}-b_{1}\right)}{\left\|\left(b_{2}-b_{1}\right)\right\|} c \sec \Phi-\frac{\left(b_{1}-b_{0}\right)}{\left\|\left(b_{1}-b_{0}\right)\right\|} \cot \Phi
$$

$i v) ~ \kappa\left(t_{d}\right)=\frac{\left\|B^{\prime}\left(t_{d}\right) \times B^{\prime \prime}\left(t_{d}\right)\right\|}{\left\|B^{\prime}\left(t_{d}\right)\right\|^{3}}=\frac{\left\|\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right) \times \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left(b_{2}-b_{1}\right)\right\|}{\left\|\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right)\right\|^{3}}$

$$
\begin{aligned}
& =\frac{\frac{d}{t_{d+1}-t_{1}} \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|}{\left(\frac{d}{t_{d+1}-t_{1}}\right)^{3}\left\|\left(b_{1}-b_{0}\right)\right\|^{3}} \\
& =\frac{d-1}{d} \frac{\left(t_{d+1}-t_{1}\right)^{2}}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)} \frac{\left\|\left(b_{2}-b_{1}\right)\right\| \cos \Phi}{\left\|\left(b_{1}-b_{0}\right)\right\|^{2}}
\end{aligned}
$$

$v)$ Let $\operatorname{det}\left(b_{1}-b_{0}, b_{2}-b_{1}, b_{3}-b_{2}\right)$ be denoted K. Then

$$
\begin{aligned}
& \tau\left(t_{d}\right)=\frac{\operatorname{det}\left(B^{\prime}\left(t_{d}\right), B^{\prime \prime}\left(t_{d}\right), B^{\prime \prime \prime}\left(t_{d}\right)\right)}{\left\|B^{\prime}\left(t_{d}\right) \times B^{\prime \prime}\left(t_{d}\right)\right\|^{2}} \\
& =\frac{\frac{d}{t_{d+1}-t_{1}} \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)} \frac{d(d-1)(d-2)}{\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+3}-t_{3}\right)} K}{\left\|\frac{d}{t_{d+1}-t_{1}}\left(b_{1}-b_{0}\right) \times \frac{d(d-1)}{\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}\left(b_{2}-b_{1}\right)\right\|^{2}} \\
& =\frac{d-2}{d} \cdot \frac{\left(t_{d+1}-t_{1}\right)\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)}{\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+3}-t_{3}\right)} \frac{\left\|b_{3}-b_{2}\right\| \cos \varphi}{\left\|\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\|}
\end{aligned}
$$

Q.E.D.

Theorem 3.4. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then, the Frenet vector fields and curvatures of this curve at the point $t=t_{m-d}$ are as follows:

$$
\begin{array}{cc}
\mathbf{T}\left(t_{m-d}\right)=\frac{b_{n}-b_{n-1}}{\| \| b_{n}} \| & \mathbf{B}\left(t_{m-d}\right)=-\frac{\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)}{\left\|\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right\|} \tag{3.6}\\
\mathbf{N}\left(t_{m-d}\right)=-\frac{\left(b_{n-1}-b_{n-2}\right)}{\left\|b_{n-1}-b_{n-2}\right\|} \csc \vartheta+\frac{\left(b_{n}-b_{n-1}\right)}{\left\|b_{n}-b_{n-1}\right\|} \cot \vartheta &
\end{array}
$$

and

$$
\begin{aligned}
\kappa\left(t_{m-d}\right) & =\frac{(d-1)\left(t_{m-1}-t_{m-d-1}\right)^{2}\left\|b_{n-1}-b_{n-2}\right\|}{d\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)\left\|b_{n}-b_{n-1}\right\|^{2}} \sin \vartheta \\
\tau\left(t_{m-d}\right) & =-\frac{d-2}{d} \frac{\left(t_{m-1}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-3}-t_{m-d-2}\right)\left(t_{m-3}-t_{m-d-3}\right)} \frac{\left\|\left(b_{n-2}-b_{n-3}\right)\right\| \cos \sigma}{\left\|\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right\|}
\end{aligned}
$$

where ϑ is the angel between the vectors $b_{n}-b_{n-1}$ and $b_{n-1}-b_{n-2}$ and σ is the angel between the vectors $b_{n-3}-b_{n-2}$ and $\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)$.
Proof. i) $\mathbf{T}\left(t_{m-d}\right)=\frac{B^{\prime}\left(t_{m-d}\right)}{\left\|B^{\prime}\left(t_{m-d}\right)\right\|}=\frac{\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right)}{\left\|\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right)\right\|}=\frac{b_{n}-b_{n-1}}{\left\|b_{n}-b_{n-1}\right\|}$
ii) $\mathbf{B}\left(t_{m-d}\right)=\frac{B^{\prime}\left(t_{m-d}\right) \times B^{\prime \prime}\left(t_{m-d}\right)}{\left\|B^{\prime}\left(t_{m-d}\right) \times B^{\prime \prime}\left(t_{m-d}\right)\right\|}$
$=-\frac{\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \times\left[\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right)\right]}{\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \times\left[\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right)\right] \|}$
$=-\frac{\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)}{\left\|\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right\|}$
iii) $\mathbf{N}\left(t_{m-d}\right)=\mathbf{B}\left(t_{m-d}\right) \times \mathbf{T}\left(t_{m-d}\right)=-\frac{\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)}{\left\|\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right\|} \times \frac{b_{n}-b_{n-1}}{\left\|b_{n}-b_{n-1}\right\|}$
$=\frac{\left(b_{n}-b_{n-1}\right) \cos \vartheta}{\left\|b_{n}-b_{n-1}\right\| \sin \vartheta}-\frac{\left(b_{n-1}-b_{n-2}\right)}{\left\|\left(b_{n-1}-b_{n-2}\right)\right\| \sin \vartheta}$
$=\frac{\left(b_{n}-b_{n-1}\right)}{\left\|b_{n}-b_{n-1}\right\|} \cot \vartheta-\frac{\left(b_{n-1}-b_{n-2}\right)}{\left\|\left(b_{n-1}-b_{n-2}\right)\right\|} c \sec \vartheta$
iv) $\kappa\left(t_{m-d}\right)=\frac{\left\|B^{\prime}\left(t_{m-d}\right) \times B^{\prime \prime}\left(t_{m-d}\right)\right\|}{\left\|B^{\prime}\left(t_{m-d}\right)\right\|^{3}}$

$$
\begin{aligned}
& =\frac{\left\|\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \times\left[\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right)\right]\right\|}{\left\|\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right)\right\|^{3}} \\
& =\frac{(d-1)\left(t_{m-1}-t_{m-d-1}\right)^{2}\left\|b_{n-1}-b_{n-2}\right\|}{d\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)\left\|b_{n}-b_{n-1}\right\|^{2}} \sin \vartheta
\end{aligned}
$$

v) Let $\operatorname{det}\left(b_{n}-b_{n-1}, b_{n-1}-b_{n-2}, b_{n-2}-b_{n-3}\right)$ be denoted by J. Then

$$
\begin{aligned}
& \tau\left(t_{m-d}\right)=\frac{\operatorname{det}\left(B^{\prime}\left(t_{m-d}\right), B^{\prime \prime}\left(t_{m-d}\right), B^{\prime \prime \prime}\left(t_{m-d}\right)\right)}{\left\|B^{\prime}\left(t_{m-d}\right) \times B^{\prime \prime}\left(t_{m-d}\right)\right\|^{2}} \\
& =-\frac{\frac{d}{t_{m-1}-t_{m-d-1}} \frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)} \frac{d(d-1)(d-2)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-3}-t_{m-d-2}\right)\left(t_{m-3}-t_{m-d-3}\right)} J}{\left\|\frac{d}{t_{m-1}-t_{m-d-1}}\left(b_{n}-b_{n-1}\right) \times\left[\frac{d(d-1)}{\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}\left(b_{n-1}-b_{n-2}\right)\right]\right\|^{2}} \\
& =-\frac{d-2}{d} \frac{\left(t_{m-1}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-1}\right)\left(t_{m-2}-t_{m-d-2}\right)}{\left(t_{m-3}-t_{m-d-1}\right)\left(t_{m-3}-t_{m-d-2}\right)\left(t_{m-3}-t_{m-d-3}\right)} \frac{\left\|\left(b_{n-2}-b_{n-3}\right)\right\| \cos \sigma}{\left\|\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right\|}
\end{aligned}
$$

Q.E.D.

In open B-spline curves, in order to express the Frenet frame of the curve $\{T, N, B\}$ and the curvatures at any point $t^{*} \in\left(t_{r}, t_{r+1}\right),(d \leq r \leq m-d-1)$, except $t^{*}=t_{d}$ and $t^{*}=t_{m-d}$, the subdivision algorithm is applied to the curve by applying Boor algorithm in parallel with the Casteljau algorithm. Thus the B-spline curve is divided into two segments. The points $\left\{b_{r}^{d}, b_{r}^{d-1}, b_{r}^{d-2}, b_{r}^{d-3}\right\}$ found by the algorithm at the given point t^{*} will represent the first 4 control points of the new B-spline curve on the right of the obtained two segments. So these control points represent the $b_{0}, b_{1}, b_{2}, b_{3}$ points of the new B-spline curve. The point t^{*} here will also represent the point t_{d} of the new B-spline curve. So following theorem can be proved similarly as before.

Theorem 3.5. An open B-spline curve $B(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then, the Frenet vector fields and curvatures of this curve at the point $t=t^{*} \in\left(t_{r}, t_{r+1}\right),(d \leq r \leq m-d-1)$ are as follows:

$$
\begin{array}{cc}
\mathbf{T}\left(t^{*}\right)=\frac{b_{r}^{d-1}-b_{r}^{d}}{\left\|b_{r}^{d-1}-b_{r}^{d}\right\|} \| & \mathbf{B}\left(t^{*}\right)=\frac{\left(b_{r}^{d-1}-b_{r}^{d}\right) \times\left(b_{r}^{d-2}-b_{r}^{d-1}\right)}{\left\|\left(b_{r}^{d-1}-b_{r}^{d}\right) \times\left(b_{r}^{d-2}-b_{r}^{d-1}\right)\right\|} \tag{3.7}\\
\mathbf{N}\left(t_{d}\right)=\frac{\left(b_{r}^{d-2}-b_{r}^{d-1}\right)}{\left\|\left(b_{r}^{d-2}-b_{r}^{d-1}\right)\right\|} \csc \Phi-\frac{\left.b_{r}^{d-1}-b_{r}^{d}\right)}{\left\|\left(b_{r}^{d-1}-b_{r}^{d}\right)\right\|} \cot \Phi &
\end{array}
$$

and

$$
\begin{aligned}
\kappa\left(t^{*}\right) & =\frac{(d-1)\left(t_{d+1}-t_{1}\right)^{2}\left\|\left(b_{r}^{d-2}-b_{r}^{d-1}\right)\right\|}{d\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)\left\|\left(b_{r}^{d-1}-b_{r}^{d}\right)\right\|^{2}} \sin \Phi \\
\tau\left(t^{*}\right) & =\frac{(d-2)\left(t_{d+1}-t_{1}\right)\left(t_{d+1}-t_{2}\right)\left(t_{d+2}-t_{2}\right)\left\|\left(b_{r}^{d-3}-b_{r}^{d-2}\right)\right\| \cos \varphi}{d\left(t_{d+1}-t_{3}\right)\left(t_{d+2}-t_{3}\right)\left(t_{d+3}-t_{3}\right)\left\|\left(b_{r}^{d-1}-b_{r}^{d}\right)\right\|\left\|\left(b_{r}^{d-2}-b_{r}^{d-1}\right)\right\| \sin \Phi}
\end{aligned}
$$

where Φ is the angel between the vectors $b_{r}^{d-1}-b_{r}^{d}$ and $b_{r}^{d-2}-b_{r}^{d-1}$ and φ is the angel between the vectors $b_{r}^{d-3}-b_{r}^{d-2}$ and $\left(b_{r}^{d-1}-b_{r}^{d}\right) \times\left(b_{r}^{d-2}-b_{r}^{d-1}\right)$.

3.2 The Bertrand pairs of open non-uniform B-spline curves

Theorem 3.6. Let two open non-uniform B-spline curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and $c_{0}, c_{1}, \ldots, c_{n}$ respectively and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=$ $t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. These curves γ_{1} and γ_{2} form a Bertrand pair at the point $t=t_{d}$ if and only if there exist $\theta \in[0,2 \pi]$ and $k \in R$ such that

$$
\begin{aligned}
& c_{1}=c_{0}+\left(b_{1}-b_{0}\right) \cos \theta-\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \sin \theta \\
& c_{2}=c_{1}+k\left(b_{1}-b_{0}\right)+\left(b_{2}-b_{1}\right)
\end{aligned}
$$

satisfies.

Proof. If these curves γ_{1} and γ_{2} form a Bertrand pair at the point $t=t_{d}$ then $\mathbf{N}_{\gamma_{1}}\left(t_{d}\right)=\mathbf{N}_{\gamma_{2}}\left(t_{d}\right)$ satisfies. Thus these vectors $\left(\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right) \times\left(b_{1}-b_{0}\right)$ and $\left(\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right)\right) \times\left(c_{1}-c_{0}\right)$ be parallel. So The vectors $\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right), c_{1}-c_{0},\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)$, and $b_{1}-b_{0}$ must be coplanar. In addition since the vectors system $\left\{c_{1}-c_{0}\right.$ and $\left.\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right)\right\}$ and $\left\{b_{1}-b_{0}\right.$ and $\left.\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\}$ are orthogonal, these systems must be $O^{+}(2)$-equivalent. i.e.

$$
\left\{c_{1}-c_{0},\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right)\right\} \stackrel{O^{+}(2)}{\approx}\left\{b_{1}-b_{0},\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right\}
$$

This means that there exist $\theta \in[0,2 \pi]$ such that

$$
\begin{aligned}
c_{1}-c_{0} & =\left(b_{1}-b_{0}\right) \cos \theta-\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \sin \theta \\
\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right) & =\left(b_{1}-b_{0}\right) \sin \theta+\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \cos \theta
\end{aligned}
$$

can be written. From this, $c_{1}=c_{0}+\left(b_{1}-b_{0}\right) \cos \theta-\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \sin \theta$ is obtained and if this substitude to second then

$$
\begin{aligned}
& \left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right)=\left[\left(b_{1}-b_{0}\right) \cos \theta-\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \sin \theta\right] \times\left(c_{2}-c_{1}\right) \\
& =\left(b_{1}-b_{0}\right) \times\left(c_{2}-c_{1}\right) \cos \theta-\left[\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right] \times\left(c_{2}-c_{1}\right) \sin \theta \\
& =\left(b_{1}-b_{0}\right) \sin \theta+\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \cos \theta
\end{aligned}
$$

can be written. Thus, from the property of vector product " \times " and the linearly independenties of the functions sinus and cosinus,

$$
\begin{aligned}
\left(b_{1}-b_{0}\right) \times\left(c_{2}-c_{1}\right) & =\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right) \\
\left\langle\left(c_{2}-c_{1}\right),\left(b_{2}-b_{1}\right)\right\rangle & =1 \\
\left\langle\left(b_{1}-b_{0}\right),\left(c_{2}-c_{1}\right)\right\rangle & =0
\end{aligned}
$$

can be obtained. So, the vectors $\left(c_{2}-c_{1}\right)-\left(b_{2}-b_{1}\right)$ and $\left(b_{1}-b_{0}\right)$ must be parallel. Thus, there exist $k \in R$ such that $\left(c_{2}-c_{1}\right)-\left(b_{2}-b_{1}\right)=k\left(b_{1}-b_{0}\right)$ can be written. So

$$
c_{2}=c_{1}+k\left(b_{1}-b_{0}\right)+\left(b_{2}-b_{1}\right)
$$

be obtained.
Q.E.D.

Theorem 3.7. Let two open non-uniform B-spline curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and $c_{0}, c_{1}, \ldots, c_{n}$ respectively and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=$ $t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. These curves γ_{1} and γ_{2} form a Bertrand pair at the point $t=t_{m-d}$ if and only if there exist $\theta \in[0,2 \pi]$ and $k \in R$ such that

$$
\begin{aligned}
c_{n} & =c_{n-1}+\left(b_{n}-b_{n-1}\right) \cos \theta-\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right) \sin \text { theta } \\
c_{n-1} & =c_{n-2}+\left(b_{n-1}-b_{n-2}\right)+k\left(b_{n}-b_{n-1}\right)
\end{aligned}
$$

satisfies.

Proof. It is proved similarly as previous theorem.
Q.E.D.

Theorem 3.8. Let two open non-uniform B-spline curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and $c_{0}, c_{1}, \ldots, c_{n}$ respectively and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=$ $t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. These curves γ_{1} and γ_{2} form a Bertrand pair at the point $t=t^{*} \in\left(t_{r}, t_{r+1}\right),(d \leq r \leq m-d-1)$ if and only if there exist $\theta \in[0,2 \pi]$ and $k \in R$ such that

$$
\begin{aligned}
c_{r}^{d-1} & \left.=c_{r}^{d}+\left(b_{r}^{d-1}-b_{r}^{d}\right) \cos \text { theta }-\left(b_{r}^{d-1}-b_{r}^{d}\right) \times\left(b_{r}^{d-2}-b_{r}^{d-1}\right)\right) \sin \text { theta } \\
c_{r}^{d-2} & =c_{r}^{d-1}+k\left(b_{r}^{d-1}-b_{r}^{d}\right)+\left(b_{r}^{d-2}-b_{r}^{d-1}\right)
\end{aligned}
$$

satisfies.

Proof. When the De Boor algorithm apply to these curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ at the ploint $t^{*} \in$ $\left(t_{r}, t_{r+1}\right)$, the control points $\left\{b_{r}^{d}, b_{r}^{d-1}, b_{r}^{d-2}, b_{r}^{d-3}\right\}$ and $\left\{c_{r}^{d}, c_{r}^{d-1}, c_{r}^{d-2}, c_{r}^{d-3}\right\}$ can be obtained. So if these control points be written in the theorem at the point $t=t_{d}$, then the proof is completed.
Q.E.D.

Theorem 3.9. Let two open non-uniform B-spline curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and $c_{0}, c_{1}, \ldots, c_{n}$ respectively and knot vectors $t_{0}=t_{1}=\ldots=t_{d}, t_{d+1}, \ldots, t_{m-d}=$ $t_{m-d+1}=\ldots=t_{m-1}=t_{m}$ be given. Then if these curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ are $\operatorname{Tr}(3)-$ Equivalent curves then γ_{1} and γ_{2} form a Bertrand pair.

Proof. $\operatorname{Tr}(3)$ is a group of all translation's in R^{3}. A translation g in $\operatorname{Tr}(3)$ is defined by $g x=x+b$; $b \in R^{3}$. Two points x and y in R^{3} are called $\operatorname{Tr}(3)$ - equivalent if there exist a transformation g in $\operatorname{Tr}(3)$ - such that $y=g x$ satisfies. Let two open non-uniform B-spline curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ of degree d with control points $b_{0}, b_{1}, \ldots, b_{n}$ and $c_{0}, c_{1}, \ldots, c_{n}$ respectively be given. For $p \in R^{3}$, let $c_{i}=b_{i}+p, \quad i=0, \ldots, n$ be given. it must be proved that $\gamma_{1}(t)$ and $\gamma_{2}(t)$ form a Bertrand pair. Fistly in case $t=t_{d}$ be considered.
$\left(\left(c_{1}-c_{0}\right) \times\left(c_{2}-c_{1}\right)\right) \times\left(c_{1}-c_{0}\right)=\left(\left(\left(b_{1}+p\right)-\left(b_{0}+p\right)\right) \times\left(\left(b_{2}+p\right)-\left(b_{1}+p\right)\right)\right) \times\left(\left(b_{1}+p\right)-\right.$ $\left.\left(b_{0}+p\right)\right)$
$=\left(\left(b_{1}-b_{0}\right) \times\left(b_{2}-b_{1}\right)\right) \times\left(b_{1}-b_{0}\right)$ is obtained. So $\mathbf{N}_{\gamma_{1}}\left(t_{d}\right)=\mathbf{N}_{\gamma_{2}}\left(t_{d}\right)$ and these curves form a Bertrand pair.
in case $t=t_{m-d}$ be considered. Then
$\left(\left(c_{n}-c_{n-1}\right) \times\left(c_{n-1}-c_{n-2}\right)\right) \times\left(c_{n}-c_{n-1}\right)$
$=\left(\left(\left(b_{n}+p\right)-\left(b_{n-1}+p\right)\right) \times\left(\left(b_{n-1}+p\right)-\left(b_{n-2}+p\right)\right)\right) \times\left(\left(b_{n}+p\right)-\left(b_{n-1}+p\right)\right)$
$=\left(\left(b_{n}-b_{n-1}\right) \times\left(b_{n-1}-b_{n-2}\right)\right) \times\left(b_{n}-b_{n-1}\right)$ is obtained. So $\mathbf{N}_{\gamma_{1}}\left(t_{d}\right)=\mathbf{N}_{\gamma_{2}}\left(t_{d}\right)$ and these curves form a Bertrand pair.

Now let $t^{*} \in\left(t_{r}, t_{r+1}\right)$ be considered ($d \leq r \leq m-d-1$). Let apply the De Boor algorihm to these curves at point t^{*}. it must be proved that $c_{i}^{j}=b_{i}^{j}+p$ satisfies for every i and every j. Let $\alpha_{i}^{j}(t)=\frac{t-t_{i}}{t_{i+d-j+1-t_{i}}}$ be considered. Let's do the proof by induction. in case $j=1$. Then
$c_{i}^{1}=\left(1-\alpha_{i}^{1}(t)\right) c_{i-1}^{0}(t)+\alpha_{i}^{1}(t) c_{i}^{0}(t)$
$=\left(1-\alpha_{i}^{1}(t)\right) c_{i-1}+\alpha_{i}^{1}(t) c_{i}=c_{i-1}-\alpha_{i}^{1}(t) c_{i-1}+\alpha_{i}^{1}(t) c_{i}$
$=\left(b_{i-1}+p\right)-\alpha_{i}^{1}(t)\left(b_{i-1}+p\right)+\alpha_{i}^{1}(t)\left(b_{i}+p\right)$
$=b_{i-1}+p-\alpha_{i}^{1}(t) b_{i-1}-\alpha_{i}^{1}(t) p+\alpha_{i}^{1}(t) b_{i}+\alpha_{i}^{1}(t) p$
$=\left[b_{i-1}-\alpha_{i}^{1}(t) b_{i-1}+\alpha_{i}^{1}(t) b_{i}\right]+p\left[\alpha_{i}^{1}(t)+1-\alpha_{i}^{1}(t)\right]$
$=\left[\left(1-\alpha_{i}^{1}(t)\right) b_{i-1}+\alpha_{i}^{1}(t) b_{i}\right]+p$
$=b_{i}^{1}+p$
is obtained. Let it is true for $j-1$ be supposed. i.e. $c_{i}^{j-1}(t)=b_{i}^{j-1}(t)+p$ is true for ecery i be supposed. Let this be proved in case j.

$$
\begin{aligned}
c_{i}^{j}(t) & =\left(1-\alpha_{i}^{j}(t)\right) c_{i-1}^{j-1}(t)+\alpha_{i}^{j}(t) c_{i}^{j-1}(t) \\
& =\left(1-\alpha_{i}^{j}(t)\right)\left(b_{i-1}^{j-1}(t)+p\right)+\alpha_{i}^{j}(t)\left(b_{i}^{j-1}(t)+p\right) \\
& =b_{i-1}^{j-1}(t)-\alpha_{i}^{j}(t) b_{i-1}^{j-1}(t)+p-\alpha_{i}^{j}(t) p+\alpha_{i}^{j}(t) b_{i}^{j-1}(t)+\alpha_{i}^{j}(t) p \\
& =\left[b_{i-1}^{j-1}(t)\left(1-\alpha_{i}^{j}(t)\right)+\alpha_{i}^{j}(t) b_{i}^{j-1}(t)\right]+p \\
& =b_{i}^{j}(t)+p
\end{aligned}
$$

is obtained. So for every i and for every $j, c_{i}^{j}(t)=b_{i}^{j}(t)+p$ satisfies. Then $c_{r}^{d}=c_{r}^{d}+p$, $c_{r}^{d-1}=b_{r}^{d-1}, \quad c_{r}^{d-2}=b_{r}^{d-2}+p, \quad c_{r}^{d-3}=b_{r}^{d-3}+p$ are written. So it is proved.
Q.E.D.

Example 3.10. Let consider the open B-spline curve of degree 3 with control points $b_{0}=(4,2,2)$, $b_{1}=(2,1,4), \quad b_{2}=(3,4,1), \quad b_{3}=(3,5,5)$ and knot vectors $t_{0}=t_{1}=t_{2}=t_{3}=0 ; ; 1=t_{4}=t_{5}=$ $t_{6}=t_{7}$.

This is cubic B-spline curve. The spline basis functions:
degree 0

$$
\begin{array}{lll}
N_{0,0}=0 & N_{2,0}=0 \quad N_{4,0}=0 \quad N_{5,0}=0 & \\
N_{1,0}=0 & N_{3,0}=\{ \} 1, \quad t \in[0,1] 0, \text { otherwise } \quad N_{6,0}=0
\end{array}
$$

degree 1 :

$$
\begin{array}{ll}
N_{0,1}=0 & N_{2,1}=\{ \} 1-t, \quad t \in[0,1] 0, \text { otherwise } \quad N_{4,1}=0 \\
N_{1,1}=0 & N_{3,1}=\{ \} t, \quad t \in[0,1] 0, \text { otherwise } \quad N_{5,1}=0
\end{array}
$$

degree 2:

$$
\begin{aligned}
& N_{0,2}=0 \quad N_{2,2}=\{ \} 2 t(1-t), \quad t \in[0,1] 0, \text { otherwise } \quad N_{4,2}=0 \\
& N_{1,2}=\{ \}(1-t)^{2}, \quad t \in[0,1] 0, \text { otherwise } \quad N_{3,2}=\{ \} t^{2}, \quad t \in[0,1] 0, \text { otherwise }
\end{aligned}
$$

and degree 3 :

$$
\begin{array}{cc}
N_{0,3}=\{ \}(1-t)^{3}, \quad t \in[0,1] 0, \text { otherwise } & N_{2,3}=\{ \} 3 t^{2}(1-t), \quad t \in[0,1] 0 \text {, otherwise } \\
N_{1,3}=\{ \} 3 t(1-t)^{2}, \quad t \in[0,1] 0, \text { otherwise } & N_{3,3}=\{ \} t^{3}, \quad t \in[0,1] 0, \text { otherwise }
\end{array}
$$

Then the open B-spline curve can be written as:

$$
\begin{aligned}
\gamma_{1}(t) & =N_{0,3} b_{0}+N_{1,3} b_{1}+N_{2,3} b_{2}+N_{3,3} b_{3} \\
& =\{ \}(1-t)^{3} b_{0}+3 t(1-t)^{2} b_{1}+3 t^{2}(1-t) b_{2}+t^{3} b_{3}, \quad t \in[0,1] 0, \text { otherwise }
\end{aligned}
$$

This means: for $t \in[0,1]$,

$$
\gamma_{1}(t)=\left(-4 t^{3}+9 t^{2}-6 t+4,-6 t^{3}+12 t^{2}-3 t+2,12 t^{3}-15 t^{2}+6 t+2\right.
$$

Figure 1. Bertrand pair of open non-uniform B-spline curves γ_{1} and γ_{2}
Now, taking the angels as zero and the multiplicity as 1 , from Theorem 10 and 11, the control points of second curve named γ_{2} are $c_{0}=(4,0,3), c_{1}=(2,-1,5), \quad c_{2}=(3,3,6), \quad c_{3}=(3,4,10)$ and these curves form a Bertrand pair indeed.(See Fig. 1)

References

[1] Bertrand, J.,Latheories de courbes a doublecourbure, Journal de Mathematiques Pures et Appliquees, 15, (1850) 332-350.
[2] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice Hall, Inc., Englewood Cliffs, New Jersey,(1976).
[3] Neill, B.O., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, (1983).
[4] Papaioannou, S.G., Kiritsis, D., An application of Bertrand curves and surface to CAD/CAM Computer-Aided Design, 17,(1985) 348-352.
[5] Ünal, D., Kişi, İ., Tosun, M.,Spinor Bishop equations of the curves in Euclidean 3- space, Advances in Applied Clifford Algebras, 23(3),(2013) 757-765.
[6] Burke John F. 1960. Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine, 34(1), (1960) 60-62
[7] A. Kucuk And O. Gursoy, On the invariants of Bertrand trajectory surface offsets, APPLIED MATHEMATICS AND COMPUTATION, 151, (2004) 763-773.
[8] A. KÜÇÜK, On the geometric locus of curvature centrals of the bertrand curve offsets, International Journal of Pure and Applied Mathematics , 63, (2010) 495-499.
[9] Ravani, B., ve Ku, T.S., Bertrand off sets of ruled and developable surfaces. Computer-Aided Design, 23(2), (1991) 145-152.
[10] Izumiya, S., Takeuchi, N., Generic properties of helices and Bertrand curves, Journal of Geometry, 74,(2002) 97-109.
[11] Balgetir, H., Bektaş, M., Ergüt, M., Bertrand curves for nonnull curves in three dimensional Lorentzian space, Hadronic Journal, 27,(2004) 229-236.
[12] Balgetir, H., Bektas, M., Inoguchi, J. I.,Null Bertrand curves in Minkowski 3-space and the ircharacterizations. Notedi matematica, 23(1),(2004) 7-13.
[13] Yilmaz, M.Y., Bektaş, M., General properties of Bertrand curves in Riemann- Otsukispace, Nonlinear Analysis, 69(10),(2008) 3225-3231.
[14] Ogrenmis, O., Oztekin, H., Ergut, M.,Bertrand curves in Galilean space and the ircharacterizations, Kragujevac Journal of Mathematics, 32,(2009) 139-147.
[15] Kazaz, M., Uğurlu, H.H., Önder, M., ve Oral, S. 2010. Bertrand Partner D-curves in Euclidean 3-space. https://www.researchgate.net/publication/45905431.
[16] Choi, J.H., Kang, T.H. Kim, Y. H., Bertrand curves in 3-dimensional space forms, Applied Mathematics and Computation, 219(3), (2012) 1040-1046.
[17] Lucas, P., Ortega-Yagües, J. A. Bertrand curves in the three-dimensional sphere, Journal of Geometry and Physics, 62 (9) (2012) 1903-1914.
[18] Tunçer, Y., Ünal, S.,New representations of Bertrand pairs in Euclide an 3-space, Applied Mathematics and Computation, 219 (4), (2012) 1833-1842.
[19] ŞENYURT, S., ÖZGÜNER, Z., Bertrand Eğri Çiftinin Küresel Göstergelerinin Geodezik Eğrilikleri ve Tabii Liftleri, Ordu Univ. J. Sci. Tech.,3(2), (2013) 58-81.
[20] Yerlikaya, F., Karaahmetoglu, S., ve Aydemir, I., On the Bertrand B-pair curves in 3dimensional euclidean space, Journal of ScienceandArts, 3(36), (2016) 215-224.
[21] Kızıltuğ, S. 2017. Bertrandand Mannheim Partner-curves on Parallel Surfaces. Boletim da Sociedade Paranaense de Matemática, 35(2), (2017) 159-169.
[22] Aksoyak, F. K., Gok, I., Ilarslan, K., 2014. Generalized null Bertrand curves in Minkowski space-time. Annals of the Alexandru Ioan Cuza University-Mathematics, 60(2), 489-502.
[23] G. Farin, Curvature continuity and offsets for piecewise conics, ACM T. Graphic, 8 (1989), 89-99.
[24] R. Farouki, Exact offsets procedures for simple solids, Comput. Aided. Geom. D., 2 (1985), 257-279.
[25] R. Farouki, V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. D., 4 (1987), 191-216
[26] J. Hoschek, Offset curves in the plane, Comput. Aided. Des., 17 (1985), 77-82.
[27] W. Tiller, E. Hanson, Offsets of two-dimentional profiles, IEEE Comput. Graph., 4 (1984), 36-46.
[28] H. Potmann, Rational curves and surfaces with rational offsets, Comput. Aided. Geom. D., 12 (1995), 175-192.
[29] Incesu, M., Gursoy, O., Bezier Yüzeylerinde Esas Formlar ve eğrilikler, XVII Ulusal Matematik Sempozyumu, Bolu, (2004) 146-157.
[30] M Incesu, O Gursoy, The similarity invariants of integral B-splines, International scientific conference Algebraic and geometric methods of analysis,May 31 - June 5, 2017, Odesa, Ukraine, 68.
[31] H. K. Samanci, S. Celik, M. Incesu, The Bishop Frame of Bézier Curves, Life Sci. J., 12 (2015), 175-180.
[32] H. K. Samanci, Some geometric properties of the spacelike Bézier curve with a timelike principal normal in Minkowski 3-space, Cumhuriyet Sci. J., 39, (2018), 71-79.
[33] H. K. Samanci, O. Kalkan, S. Celik, The timelike Bézier spline in Minkowski 3-space, J. Sci. Arts, 19 (2019), 357-374.
[34] Samancı Kuşak, H.,On Curvatures of The Timelike Rational Bézier Curves in Minkowski 3Space, Bitlis Eren Universitesi Fen Bilimleri Dergisi, 7(2), (2018) 243-255.
[35] S. Baydas and B. Karakas, Detecting a curve as a Bézier curve, J. Taibah Univ. Sci., 13 (2019), 522-528.
[36] Muhsin Incesu. LS (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces AIMS Mathematics, 5(2), (2020) 1216-1246. doi: 10.3934/math. 2020084
[37] Tiller, W., Knot-removalalgorithmsfor NURBS curves and surfaces, Computer-Aided Design, 24(8),(1992) 445-453.
[38] Hoschek, J., Circular splines Computer-Aided Design, 24(11),(1992) 611-618.
[39] Meek, D. S., ve Walton, D. J., Approximating quadratic NURBS curves byarc splines, Computer-Aided Design, 25(6),(1993) 371-376.
[40] Neamtu, M., Pottmann, H., and Schumaker, L.L. , Designing NURBS cam profiles using trigonometric splines, ASME. J. Mech. Des., 120(2) (1998) 175180.
[41] Juhász, I., Weight-based shape modification of NURBS curves, Computer Aided Geometric Design, 16(5), (1999) 377-383.
[42] Piegl, L.A. ve Tiller, W., Computing off sets of NURBS curves and surfaces, Computer-Aided Design, 31(2), (1999) 147-156.
[43] Piegl, L. A. Ve Tiller, W. Biarcapproximation of NURBS curves, Computer-Aided Design, 34(11), (2002) 807-814.
[44] Liu, L., Wang, G., Explicitmatrix representation for NURBS curves and surfaces, Computer Aided Geometric Design, 19(6),(2002) 409-419.
[45] Selimovic, I., Improved algorithms for the projection of points on NURBS curves and surfaces, Computer Aided Geometric Design, 23(5), (2006) 439-445.
[46] Samancı Kuşak, H. Introduction to Timelike Uniform B-Spline Curves in Minkowski 3-Space, Journal of Mathematical sciences and Modelling, 1(3),(2018) 206-210.
[47] Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London (1999).

