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Abstract

In this paper the second and third derivatives of open non- uniform B-spline curves and the
Frenet vector fields and curvatures at the points t = ¢4 , t = t,,—q and arbitrary point in
domain of this curves are given. In addition,the control points of the second open non-uniform
B-spline curve are given in terms of the control points of the first open non-uniform B-spline
curve when given two curves occured a Bertrand curve pairs at a point.
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1 Introduction

In 1850 J.Bertrand gave the feature that helix curves accept other curves with the same original
normal vector field. [1]. The curves that provide this feature are called Bertrand curves.

When the curve with curvature x and torsion 7 in R3is given, if this curve is planar or the
relationship between its curvatures x + a 7 = b satisfies for nonezero constants a,b then this
curve is a Bertrand curve. [2]. It is possible that the Bertrand curves are defined as their principal
nornals are parallel. [1]. In recent years, Bertrand curves play an important role in computer-
aided geometric designs (CAD) and computer-aided modeling (CAM).[3] , [4], [5] . Due to this
importance Bertrand curves have been studied by geometers in different spaces. [6] ,[7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17] , [18] ,[19], [20], [21] , [22].

The best examples of points systems are Bezier curves and Bezier surfaces. Bezier and B-Spline
curves has been studied in many different are of CAD and CAM system. Some of these studies by
G. Farin [23], R. Farouki [24], [25], J. Hoschek [26] , W. Tiller [27] , H. Potmann [28] , Incesu and
Gursoy [29] , [30], Samanci et al. [31] , [32], [33], [34] , Baydas and Karakas [35] and Incesu [36]
can be given exemplarily.

Other Studies on B-spline curves and NURBS curves [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46] can be given as examples.

NURBS curves are rational B-Spline curves without uniform distribution. Bezier curves, B-
Spline curves and NURBS curves are curves that are widely used in computer graphics (CAD)
(CAM) systems.

In this study, ”When two NUBS curves A and B are given, their control points are b; and g;, if
these curves form Bertrand pairs at a point, how should be relation between the control points of
these curves b; and ¢;?” question has been answered.
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2 Preliminaries

Definition 2.1. The B-spline basis functions of degree d, denoted N 4(t), defined by the knot
vector tg,t1, ..., t,, are defined recursively as follows:

1,t € |t;, t;
Nio(t) — { [ +1)

’ 0, otherwise

and

t—1;
titd — Ui
fori =0,...,n and d > 1. If the knot vector contains a sufficient number of repeated knot values,
then a division of the form N; 4—1(¢)/(ti+a — t;) = 0/0 (for some i) may be encountered during the
execution of the recursion. Whenever this occurs, it is assumed that 0/0 = 0. [47]
The B-spline curve of degree d (or order d + 1) with control points by, ..., b, and knots tg, ..., tm
is defined on the interval [a,b] = [tq,tm—a] by

tizger — T
Nia-1(t) + — 52— Niy1aa (1) (2.1)

N; q(t) =
sa(®) titdr1 — tit1

B = 3 hNoa(t) (22)
1=0

where N; 4(t) are the B-spline basis functions of degree d. To distinguish Bspline curves from
their rational form they are often referred to as integral B-splines.[47]

Theorem 2.2. The B-spline basis functions N; 4(t) satisfy the following properties [47] :

i) Positivity: N, q(t) > 0 for ¢ € (¢, titar1)-

ii) Local Support: N, 4(t) =0 for t ¢ (¢;,titd+1)-

iii) Piecewise Polynomial: N; 4(t) are piecewise polynomial functions of degree d.

iv) Partition of Unity: >  N;4(t)=1fort € [t,, t,41)

i=r—d

Theorem 2.3. A B-spline curve defined as ( 2.2 ) of degree d defined on the knot vector g, ..., t,
satisfies the following properties [47] :

i) Local Control: Each segment is determined by d + 1 control points. If ¢ € [t,,tr41)(d <
r<m-—d-—1), then

B(t)= Y biNia(t).

i=r—d

Thus to evaluate B(t) it is sufficient to evaluate Ny_g 4(t), ..., Ny q(t).
ii) Convex Hull: If ¢t € [tr,tr +1)(d <r <m —d—1), then B(t) € CH{by—_g,...,b.} .
iii) Invariance under Affine Transformations: Let T be an affine transformation. Then

T( Z biNZ—,d(t)> = Z T (b;) Ni.a(t)

i=r—d i=r—d
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2.1 Open B-spline curves

In general, B-spline curves do not interpolate the first and last control points by and b,,. For curves
of degree d, endpoint interpolation and an endpoint tangent condition are obtained by open B-
splines. An open B-spline curve is a B-spline curve which exterior knot vectors are the same as the
knots tq and t,,_q. i.e. to =t1 = ... =tg and t\—qg =tm—gy1 = ... = tjn—1 = t,,, satisfies.

Theorem 2.4. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot
vectors tg = t1 = ... = tg,tg+1, - tm—d = tm—d+1 = -« = tm—1 = t;n be given. Then

B(td) = bo and B(tm,d) = bn
satisfies [47].

Definition 2.5. A B-spline curve is said to be uniform whenever its knots are equally spaced,
and non-uniform otherwise. A uniform B-spline curve is said to be open uniform whenever its
interior knots are equally spaced, and its exterior knots are same. Similarly A non-uniform B-spline
curve is said to be open non-uniform whenever its exterior knots are same and its interior knots
are not equally spaced.

Theorem 2.6. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot

vectors tg =t1 = ... = tq, tg41, -y tm—d = tm—d+1 = ... = tmm—1 =t be given. Then,
/ d
B (ty) = —— (b1 — by) (2.3)
tgr1 —t1
! d
B (tm—a) = (b — bp—1) (2.4)

tm—1 — tm—d—1
are satisfied.[47]

Remark 2.7. An open B-spline curve B(t) of degree d with control points b, b1, ..., b, and knot

vectors tg = t1 = ... = tg;tage1, oy tmed = tm—d+1 = --- = tjm—1 = t;, be given. If ¢ty =1, = ... =

tqg=0and ty,—qg =tm—gtr1 = .. = tin—1 = t;y, = 1 Then,

/ d
B (0) = ——(b1 — bo) (2.5)
tat+1
! d
B (1) = (b = bn—1) (2.6)
—tm—d-1

are obtained.
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2.2 The De Boor algorithm

Just as the de Casteljau algorithm for B “ezier curve, evaluations of points on a B-spline curve can
be performed using a method known as the de Boor algorithm. Let an open B-spline curve B(t)
of degree d with control points by, b1, ..., b, and knot vectors to = t1 = ... = tg,tasr1, s tin—d =
tm—dt1 = .o = tj—1 = t;m be given. Suppose t* € [t,,t.1+1).Then, the De Boor algorith can be
summarized as follows:

bi(t) = (1 o (t)) b + ol ()6 ()

_ t—t,;
ag (t) - ti+d—j+11*t7‘,

(2.7)

forj=1,..,d andi=r—d+j,...,r.where 9 =b;, b_1 =0 and by,_gqr+1 = 0.To summarize,
for a given parameter value t, the de Boor algorithm ( 2.7) yields a triangular array of points such
that b¢ = B(t)

?g—d bg—d-l—l 1 bg
. I
by = B(t)

[47]

3 Main results
3.1 The Frenet frame on the open non-uniform B-spline curves

Theorem 3.1. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot

vectors tg =t1 = ... = ta, tat1, oy tn—d = t—d41 = ... = tmm—1 =ty be given. Then,
d(d—1) d(d—1)
B// t — b _ b . b B b 3.1
. (ta1 —t2) (tar2 — t2) (b2 =b) (tatr — t2) (tas1 — t1) (b1 = bo) (3.1)
d(d—1)
B (ty— = by b iy
( d) (tm_2 - tm—d—l) (tm—l _ tm—d—l) ( 1) ( )
d(d—1)

_ by 1 — by
(trm—2 — tm—a—1) (tm—2 — tm7d72)( ! 2)

are satisfied.

Proof. From [47], the th r th derivative of an open B-spline curve is B (t) = >~ bgr)Ni(;)_r(t)

here % = b, and b7 = A== 412 ). Acconding to his B = 12— by
and bgl) = td+f_t1 (b1 — bg) = B'(tq) can be written. Also from [47],
2 _ 1 1 _
Ba) = W2 = e 08— ) = ot [ b — i )] cam be ob

tained. Similaly the second derivative of open non-uniform B spline curves at the point t = ¢,,_4

can be obtained as
B (ty—a) A1) (b —bn_1) — dg-1) (by—1—bp_2)-

T (tm—2—tm—a-1)tm-1—tm—d-1) (tm—2—tm—d—1)({tm—2—tm—d—2)
Q.E.D.
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Theorem 3.2. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot

vectors tg =t1 = ... = tg, tags1, - tm—d = tm—d+1 = .. = tm—1 = t;m be given. Then,

" _ d(d B 1)(d - 2)
B(ta) = (tarr —t3) (tar2 — t3) (tars — t3) (ba = b2) (3:3)
d(d — 1)(d — 2) (td+1 —ta +ta42 — tg) (b b )
(tas1 — ts) (tapz — t2) (tarz — ts) (tays —t2) =
d(d —1)(d - 2)
+(75d+1 —t3) (tay1 — t2) (tay1 — t1) (b1 = bo)

d(d —1)(d — 2)(bn — bp—1)
) = (tm—3 —tm-d-1) (bm—2 — tm—d—1) (bm—1 — tm—a—1) 34
d(d—1)(d = 2) (tm-3 — tm—d—2 + tm—2 — tm—d—1) (bp—1 — bp_2)
(tm-3 — tm—d—1) (tm—2 — tm—-d—2) (tm—2 — tm—d—1) (tm—-3 — tm—d—2)
d(d — 1)(d — 2) (b — bp_3)
(tm—3 = tm—d—1) (tm—3 — tm—d—2) (tm—3 — tm—a—3)

B (tm—

+

are satisfied.

Proof. Let r = 3 be choosen in bl(.r) In this case b(s) = % (bg_)l - bz(-2)> is obtained.
d—1 1 1 2 d—1 1 1
The statements b5+)1 = m (b£+)2 — bg_&) and b( ) = m (bg_ﬁl — bg )) must
. . 1
be substituted in bi It ler2 = m (bi+s — bit2), biJr)1 = m (bit2 — biy1) and

b(l) (bix1 — b;) are substituted in bz(i)l and bl(?) then

d
T (titd+1—tit1)
(2 _ (d—1) d e — b o d (b ia—b
bH—l (itarz—tizs) ((ti+d+3_ti+3) (b1+3 bz+2) (titdrs—tits) (bz+3 bz+2)> and

p — _ (d=1) ( d

(tita+1—tiv2) \ (titd+2—tit2)

(biy2 — bit1) — m (biy1 — bl)) can be written. So

3) _ d(d—1)(d—2) ) 7.
b = (titay1—tits)(titat2—tits)(Livars—tits) (bits = bi+2)

_ d(d—1)(d—=2)(titay1—titottitara—tits) (bito — bit1)
(titar1—tits)(tivdre—tiv2)(bivdre—tizs)(bigar1—tizz) 12 i+l
d(d—1)(d—2) b — b

( i+1 z)

(tz+d+1 tits)(titdt1—tit2)(titdr1—tit1)
is obtained. From end point interpolation property of open B-spline curves B"'(t4) = b((]‘q') and

B" (tym—q) = bfflg satisfy. So the proof is complated. Q.E.D.

Theorem 3.3. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot
vectors tg =11 = ... = tg,tg41, - tm-d = tm—d+1 = - = t;m—1 =t be given. Then, the Frenet
vector fields and curvatures of this curve at the point t = t; are as follows:

by _ (bimb)x(baby)
T(btfj) Moy — bgy . B(t(,;) ;(tn(bl—tbo))zxu((z;f_zl))|l\l (3.5)
N(ta) = [ ese® = sy ot ®  Klta) = G e 2o tn o S0 @
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and

() = (d—=2) (tays —t1) (tas1 — t2) (tata — t2) [[(bs — ba)|[ cos ¢
d(ta+1 — t3) (tatr2 — t3) (tars — t3) [[(br — bo) || [[(b2 — b1)|| sin @
where® is the angel between the vectors by — by and by — by and ¢ is the angel between the
vectors by — by and (by — bg) X (b2 — by).

. B(1a) m“’l ) (bi=bo)
P?”OOf. Z) ( ) B G — (b1—bo) = T®i=bo)]]
td+ —t 0
. B’ (ta)xB" (ta)
ii) B(tq) = m
e A
— td+1 7 (b1=bo)x (’d+1*ﬁ2)(fd+2*f’2)(b2 b1) (b1=bo) X (b2—b1)

fd+1 t1 (b1 — bO)X( d+1 iS@ZLz 12)(b2_b1)' H(bl R
(by—bo) x (ba—b1) (b1 —bg)
iti) N(ta) = B(ta) X T(ta) = 15, =50)x (s =51 X T(or—b0)]
_ ((bi—=bo)x(b2—b1)) X (b1 —bo) [l (b1 =bo)[I* (b2—b1) = (b1 —bo,ba —b1) (b1 —bo)
- H(b(lb_bog>3(b2_b1)““(bql>(bb0)z|)‘) H(Zl bo) x (ba— bl)””(blbbo)H
_ 2—01 Ccos 1 0 1 by 0
= Te=hln® — S el = s B¢ 56 — 5, =gy 0t L
_d  p _ d@d=1) =
iv) wity) = LECxB @]l _ |mm=n O )y ) )
1B [——Tk
td+1—t1
AL l|(b1—bo) x (b2—b1) |

_ td+1 1 (tgp1— tz)(fd+2 t2)
() I —bo)?
L (tay1—t1)* || (ba—b1)]|| cos @
(tat1—t2)(tat2—t2)  |[(b1—bo)|>
v) Let det (b1 — bg, by — by, b3 — by) be denoted K. Then
det(B'(ta), B (ta).B" (ta))

7(ta) = 157(ta) x Bt
d(d— d(d—1)(d—2)
_ fd+1—t (bgqi— tz)(td+2 t2) (ta+1—t3)(tat2—t3)(ta+3— X
- 2
_d_ (p—p o dd=)  poy
td+1_t1( 1=bo) X (td+1*t2)(td+2’t2)( 2=b1)

d—2 (tay1—t1)(tay1—t2)(tapa—t2)  [[bz—ballcos 0D
d " (tat1—t3)(tat2—t3)(tats—ts) [[(b1—bo) X (b2—b1)]| T

Theorem 3.4. An open B-spline curve B(t) of degree d with control points by, b, ..., b, and knot
vectors tg = t1 = ... = tag,td+1s ey tm—d = tm—d+1 = ... = tim—1 = b, be given. Then, the Frenet
vector fields and curvatures of this curve at the point ¢t = t,,,_4 are as follows:

—by _ (b, —brn—1)X(bp—1—bp_2)
T(tm-a) = 1527520 Bltn—d) = ~ [0 tnx G tnsl (3.6

bp_1—bn ,—bn
N(tm_q) = *7ﬁbn_i —bn_iﬂ cseld + 7(“, 1\)| cot ¥

and
-1 = tmea1)? 1 —bp_
fi(tm—d) _ (d ) (tm 1 tm d 1) ||bn 1 bn 2” . sin ¥
d (tm—2 - tm—d—l) (tm—2 - tm—d—2) ||bn - bn—l ||
o d—2 (tmfl - tmfdfl) (tm72 - tmfdfl) (tm72 - tm7d72) H(bn72 - bn73)” Cos o
T(tm,d) = —

d (tm—3 - tm—d—l) (tm—3 - tm—d—Q) (tm—3 - tm—d—3) ||(bn - bn—l) X (bn—l - bn—2)||
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where ¥ is the angel between the vectors b, —b,_1 and b,_1 —b,_2 and o is the angel between
the vectors bp,_3 —by—o and (bp, —bp—1) X (bp—1 — bp—2).

’ d bp—by—
Proof. i) T(tm—q) = ||g/82:3;\| = ‘tml_;mdlibn_bn 11” = oy
1 —tm—d—1 " !
i0) Bltm-a) = T
t’m_lf(tim*‘lfl (Bn—br—1)x [(fm—2*fm—dfi(;ztlrl—2*fm—d—2) (bnfl_bnfﬂ}
e s e |

- _ (b —bn—1)X(bn—1—bn_2)
[[(br,=bn—1)X(bn—1—bn_2)||

_ _ (br,—=bn—1)X(br_1—by_2) bp—bn_1
1#1)N(tm-a) = B(tm-a) X T(tm-a) = = [mapr %G1 b2 ¥ Toubu ]
_ (bp=bn_1)cosd _ (bn—1—bn_2)
[|br,—brp—1]| sind [[(bp—1—bp—2)| sind
_ (ba=bn_1)  (bp—1=br2)
= ety €080 — o p e sec
. HB/(tand)XB,/(tnL—d)H
W) K(tm—_q) =
) #iltm—a) B (tm—a)[®
4 (b,—bp_ d(d—1) b1 —bn_
P 1t a1 % (tm—2’tm,fdfl)(tm—2’t7n7d72)( ! 2)

P 3
H tm—1—tm—d—1 (bnib"_l)H

(d=1)(tm—1—tm—a—1)bn1—bn_2|
d(tm—2—tm—d—1)(tm—2—tm—d—2)|[bn—bn_1|
v) Let det (by, — bp—1,bp—1 — bpy—2,b,—2 — by—3) be denoted by J . Then
det(B,(tnL—d)vB”(tmfd)vB,N(tmfd))

E sin ¥

T(tm—a) = =BG % B (T
d d(d—1) d(d—1)(d—2)
. ‘tmo17tmod1 (trm—2—tm—a—1)(tm—2—tm—a—2) (tm73_t7n7d—1)(f’mfi%_tmfd—Q)(f’mfi%_;m,fd—S)
d(d—1
"mfl_;’im*dfl (bn=bn-1)x |:(t’mf27tm—d—i)(t77)l727tm—d—2) (b"il_bniﬂ} H
_ d=—2(m-1—tm-d—1)(tm-—2—tm-d—1)(Em-—2—tm_d—2) [[(brn—2—=bn—_3)|| cos o
T 7 d (tm-s—tm-a—1)Em-3—tm-a—2)(Em-3—tm—a—3) [(On—bn—1)X(On_1—bn_2)]| Q.E.D.

In open B-spline curves, in order to express the Frenet frame of the curve {T, N, B} and the
curvatures at any point t* € (t,,t,41), (d <17 <m—d—1), except t* =t4 and t* = t,,,_q, the sub-
division algorithm is applied to the curve by applying Boor algorithm in parallel with the Casteljau
algorithm.Thus the B-spline curve is divided into two segments. The points{bi b=t pd—2 pd—3
found by the algorithm at the given point ¢t* will represent the first 4 control points of the new
B-spline curve on the right of the obtained two segments. So these control points represent the
bg, b1, ba, b3 points of the new B-spline curve. The point ¢* here will also represent the point ¢4 of

the new B-spline curve. So following theorem can be proved similarly as before.

Theorem 3.5. An open B-spline curve B(t) of degree d with control points by, by, ..., b, and knot
vectors tg = t1 = ... = tg,tg41, -y tm-d = tm—d+1 = - = t;m—1 = t, be given. Then, the Frenet
vector fields and curvatures of this curve at the point ¢ = t* € (¢, t,41) ,(d<r<m-—d—1) are
as follows:

bit—pd e P (e
T(") = ||b§*1—b;’:| B(t") = ||Ebf*1—b;%;xgb;‘f*2—bﬁ*1§||

pd—2 _pd—1 pd—1_pd (3.7)
N(tq) = HEbg’T;“chsc(b — W cot ®

r |
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and
B N2 (pd=2 _ pd—1
d (tass —ta) (taya — t2) | (b5~ = b3 |
() (d—2) (tars —t1) (tas1 — t2) (taga — t2) || (b2 — bE72) || cos

d (td+1 — tg) (td+2 — tg) (td+3 — tg) H (bf_l — bg) || || (b?_Q — bﬁl_l) H sin ®
where® is the angel between the vectors b3~ —b? and b3=2 —b3=1 and ¢ is the angel between
the vectors b33 —b9=2 and (bf‘1 — bf) X (bff_2 — b;‘f‘l) .

3.2 The Bertrand pairs of open non-uniform B-spline curves

Theorem 3.6. Let two open non-uniform B-spline curves 7 (¢) and ~2(t) of degree d with control
points by, b1, ..., b, and cg, c1, ..., ¢, respectively and knot vectors to =t1 = ... = tq,tat1, -y tm—ad =
tm—d+1 = - = tj—1 = t;, be given. These curves 7; and 7, form a Bertrand pair at the point
t = tq if and only if there exist § € [0,27] and k € R such that

cT = Co+(b1 —bo) COSQ—(b1 —bo) X (bg—bl)Sine
C1 —+ k(bl — bo) + (b2 — bl)

C2

satisfies.

Proof. If these curves v; and 7, form a Bertrand pair at the point ¢ = tg then N, (tq) = N, (tq)
satisfies. Thus these vectors ((by — bg) X (ba — b1)) x (b1 —bg) and ((¢1 — ¢g) X (ca — 1)) X (€1 — ¢p)
be parallel. So The vectors (¢ — ¢g) X (ca —e¢1) , ¢1 —co , (b1 — bg) X (ba —b1) , and by — by
must be coplanar. In addition since the vectors system {c; — ¢o and (¢; — ¢p) X (c2 — 1)} and
{b1 — by and (b — by) X (by — b1)} are orthogonal, these systems must be OT(2)—equivalent. i.e.

0*(2)
{e1 —co, (e1 —co) x (2 —c1)} = {by—bo, (b1 —bo) x (b — 1)}
This means that there exist 6 € [0,2n] such that

CcCl—Cy = (bl — bo) cosf — (bl — b()) X (bg — b1>SiIl9
(Cl — C(]) X (CQ — Cl) = (b1 — b()) sin 6 + (b1 — b()) X (bz — bl) cos

can be written. From this, ¢; = ¢o + (by — bo) cos§ — (by — bg) x (ba — by)siné is obtained and
if this substitude to second then

(Cl — Co) X (CQ — Cl) = [(bl — bo) cosf — (b1 — bo) X (b2 — b1)SiH9] X (CQ — Cl)

= (b1 — bo) X (CQ — Cl) cosf — [(bl — bo) X (b2 — b1 ] X (62 — cl)sine

= (b1 — bo) sin @ + (bl — bo) X (bg — bl) cos

can be written. Thus, from the property of vector product ” x” and the linearly independenties
of the functions sinus and cosinus,

(bl — bo) X (CQ — Cl) = (bl — bo) X (bz — bl)
((ca—c1), (b2 —b1)) =
((b1 = bo), (c2 — c1))

Il
o =
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can be obtained. So, the vectors (¢ — ¢1) — (ba — b1) and (by — bg) must be parallel. Thus, there
exist k € R such that (co —¢1) — (ba — b1) = k(b1 — bp) can be written. So

co=1c1+ k(bl — bo) + (bQ — bl)
be obtained. Q.E.D.

Theorem 3.7. Let two open non-uniform B-spline curves 7, (t) and ~(t) of degree d with control
points by, b1, ..., b, and cg, c1, ..., ¢, respectively and knot vectors to =t1 = ... = tg, tat1, -y tm—d =
tm—d41 = - = t;m—1 =ty be given. These curves v and 7, form a Bertrand pair at the point
t = tm—q if and only if there exist 6 € [0,27] and k € R such that

¢n = Cno1+ (bn —bp_1)cost — (b, —bp_1) X (b—1 — by—2) sintheta
Cp—1 = Cp_o+ (bnfl - bn72) + k(bn - bnfl)
satisfies.
Proof. 1t is proved similarly as previous theorem. Q.E.D.

Theorem 3.8. Let two open non-uniform B-spline curves 71 (¢) and 72(t) of degree d with control
points by, by, ..., b, and ¢y, ¢y, ..., ¢, respectively and knot vectors tg =t = ... = tg,tgq1, -y tm—d =
tm—d41 = -« = t;jm—1 =ty be given. These curves v and 7, form a Bertrand pair at the point
t=1t*€ (tr,tr41) ,(d <r <m—d—1) if and only if there exist § € [0,27] and k € R such that

o= (08 — b costheta — (b1 — b)) x (b¢72 — b71)) sintheta
o= TR b+ (0 = b

satisfies.

Proof. When the De Boor algorithm apply to these curves ~1(¢t) and ~2(t) at the pioint t* €
(tr,tr41), the control points {b%, b9, b¢=2 53731 and {c?, 1, ¢?72 ¢33} can be obtained. So

if these control points be written in the theorem at the point ¢ = ¢4, then the proof is completed.
Q.E.D.

Theorem 3.9. Let two open non-uniform B-spline curves 71 (t) and ~2(t) of degree d with control
points by, b1, ..., b, and cg, c1, ..., ¢, respectively and knot vectors to =t1 = ... = tg, tat1, -y tm—d =
tm—dt1 = ... = tm—1 =t be given. Then if these curves 71 (t) and ~2(t) are Tr(3)— Equivalent
curves then v; and 5 form a Bertrand pair.

Proof. Tr(3) is a group of all translation’s in R3. A translation g in Tr(3) is defined by gz = x +b;
b € R3. Two points z and y in R? are called Tr(3)— equivalent if there exist a transformation g
in Tr(3)— such that y = gx satisfies. Let two open non-uniform B-spline curves 7 (¢t) and ~,(¥)
of degree d with control points by, b1, ..., b, and co, c1, ..., ¢, respectively be given. For p € R3, let
¢ =b;+p, i=0,..,n be given. it must be proved that v;(¢) and ~2(¢) form a Bertrand pair.
Fistly in case t = t4 be considered.
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((e1 = co) X (c2 — 1)) x (€1 — co) = (((b1 +p) — (bo +p)) x ((b2 +p) — (b1 +p))) x ((b1 +p) —
(bo +p))

= ((by —bg) x (bg — b1)) x (b1 — bo) is obtained. So N, (tq) = N,,(t4) and these curves form a
Bertrand pair.

in case t = t,,—q be considered. Then

((Cn - Cn—l) X (Cn—l - Cn—2)) X (Cn - Cn—l)

= (((bn +p) - (bn—l +P)) X ((bn—l +p) - (bn—2 +p))) X ((bn +P) - (bn—l +p))

= ((bn — bp-1) x (bp—1 —bp—2)) x (bp — bp_1) is obtained. So N, (t4) = N,,(ts) and these
curves form a Bertrand pair.

Now let t* € (t,,t,4+1) be considered (d < r < m —d —1). Let apply the De Boor algorihm to
these curves at point t*. it must be proved that ¢/ = b! + p satisfies for every i and every j. Let

ol (t) = —=L— be considered. Let’s do the proof by induction. in case j = 1. Then
4 titd—j+1—1t;

i = (L—a;(t) &4 (t) + af(t)e)(t)

= (1—af(t) ci1 + of (t)e; = cim1 — of (H)eim1 + o (H)e

= (bi—1+p) — i (t) (bi—1 +p) +a1( ) (bi + )

=bi1+p—aj(t)bi1 —af()p+ o ( )bi + ( )

= [bic1 — af (b1 + a}(t )b] plaf(t) +1

= ({1 ab@)) s + el (0] +

=b; +p | ‘

is obtained. Let it is true for 5 — 1 be supposed. i.e. cgfl(t) = bfl(t) + p is true for ecery i be
supppsed. Let this be prpved in case j.'

) = (1-al(t)) el () +ad (e~ (1)

= (1= o) (M=) +p) +ad@) (7' 0) +p)
‘ 1T () +p—al(t)

)

orf (t)]

= b1 (1) — o (0] p+ o] ()b] 71 (8) + o] (t)p
= izt (1= el ) + ol ¥ @) +p
=b(t)+p } ‘
is obtained. So for every i and for every j , cl(t) = b](t) + p satisfies. Then c? = ¢ + p,
A=l =pd=1 =2 =pd=2 1 p 43 = p?=3 4 p are written. So it is proved. Q.E.D.

Example 3.10. Let consider the open B-spline curve of degree 3 with control points by = (4, 2, 2),
b =(2,1,4), ba =(3,4,1), b3 = (3,5,5) and knot vectors tg =t1 =ta =t3 =0; ;1 =14 =t5 =
te = t7.

This is cubic B-spline curve. The spline basis functions:

degree 0

Nopo=0 Nyg=0 Ngo=0 N5o=0
Nl,O =0 Ng,o = {}1, te [0, 1]0,otherwise N670 =0

degree 1:

N()’l =0 N2$1 = {}1 —t, te [0, 1]0,otherwise N4’1 =0
N1 =0 N3 ={}t, te]0,1]0,otherwise N1 =0
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degree 2:
NO’Q =0 NQ’Q = {}2t (1 — t), te [07 1]0,0therwise N4’2 =0
Nio={}1—-1), tel0,1]0,otherwise N3o = {}t?, t€[0,1]0, otherwise

and degree 3:

Nos={}1—1t)®, te€[0,1]0,otherwise  Np3 = {}3t2(1 —t), t € [0,1]0,otherwise
Niz={}3t(1—- t)?, t € [0,1]0, otherwise N33 = {}t3, t€0,1]0, otherwise

Then the open B-spline curve can be written as:

Y1(t) = Nogzbo + Ni3bi + Nazbs + N3 3b3
= A =8)bo43t (1 —t)>by +3t2 (1 — t) by + t3b3, t € [0,1]0, otherwise
This means: for t € [0, 1],

Y1(t) = (—4t% 4+ 9t% — 6t + 4, —6t> + 12t% — 3t +2,12t3 — 15> + 6t + 2

10 —

b

- 4

FIGURE 1. Bertrand pair of open non-uniform B-spline curves v; and -

Now, taking the angels as zero and the multiplicity as 1, from Theorem 10 and 11, the control
points of second curve named 7, are ¢g = (4,0,3), c1 = (2,-1,5), ¢2 = (3,3,6), c3 = (3,4,10)
and these curves form a Bertrand pair indeed.(See Fig. 1)
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